Aqueous‐Phase Sonogashira Alkynylation to Synthesize 5‐Substituted Pyrimidine and 8‐Substituted Purine Nucleosides

Joon Hyung Cho1, Kevin H. Shaughnessy1

1 Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 1.27
DOI:  10.1002/0471142700.nc0127s49
Online Posting Date:  June, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

In this unit, an efficient method for the synthesis of alkyne‐modified nucleosides in an aqueous solvent system is described. The method allows direct palladium‐catalyzed alkynylation of readily available unprotected 8‐bromo‐2′‐deoxyguanosine (8‐BrdG), 8‐bromo‐2′‐deoxyadenosene (8‐BrdA), 8‐bromoadenosine (8‐BrA), and 5‐iodo‐2′‐deoxyuridine (5‐IdU) precursors. The optimal catalyst is derived from palladium acetate, tri‐(2,4‐dimethyl‐5‐sulfonatophenyl)phosphane (TXPTS), and CuI. Curr. Protoc. Nucleic Acid Chem. 49:1.27.1‐1.27.10. © 2012 by John Wiley & Sons, Inc.

Keywords: modified nucleoside; alkynylation; palladium; cross‐coupling

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of Alkynylated Nucleosides from Halonucleosides
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of Alkynylated Nucleosides from Halonucleosides

  Materials
  • Palladium acetate [Pd(OAc) 2], reagent grade, 98% (Sigma‐Aldrich)
  • Trisodium tri(2,4‐dimethyl‐5‐sulfonatophenyl)phosphane (TXPTS), prepared according to literature method (Gulyás et al., )
  • Copper iodide (CuI), 98% pure (Sigma‐Aldrich)
  • 5‐Iodo‐2′‐deoxyuridine ( S.1, 5‐IdU), ≥ 99% pure (Sigma‐Aldrich)
  • 8‐Bromo‐2′‐deoxyadenosine ( S.4, 8‐BrdA), prepared according to literature method (Ikehara and Kaneko, )
  • 8‐Bromoadeonsine ( S.5, 8BrA), reagent grade (Sigma‐Aldrich)
  • 8‐Bromo‐2′‐deoxyguanosine ( S.8, 8‐BrdG), prepared according to literature method (Gannett and Sura, )
  • Deionized water
  • Acetonitrile, ≥ 99.9% pure, for HPLC (Sigma‐Aldrich)
  • Nitrogen gas, ultra high purity
  • Triethylamine, ≥ 99% pure (Sigma‐Aldrich)
  • Alkynes:
    • Phenylacetylene ( S.2a), 98% pure (Sigma‐Aldrich)
    • 1‐Hexyne ( S.2b), 97% pure (Sigma‐Aldrich)
    • 3‐Butyn‐1‐ol ( S.2c), 97% pure (Sigma‐Aldrich)
    • 2‐Methyl‐3‐butyn‐2‐ol ( S.2d), 98% pure (Sigma‐Aldrich)
  • Methanol (MeOH), ≥ 99.8%, anhydrous (Sigma‐Aldrich)
  • Concentrated (37%) hydrochloric acid, ACS reagent (Sigma‐Aldrich)
  • Acetone, ACS reagent, ≥ 99.5% pure
  • Ethyl acetate, ACS reagent, ≥ 99.5% pure
  • Dichloromethane (CH 2Cl 2)
  • MBraun LabMaster 130 dual length drybox with nitrogen atmosphere at <10 ppm H 2O and O 2 concentration
  • 10‐mL round‐bottom flasks
  • 3/8‐in. egg‐shaped Teflon‐coated magnetic stirring bar
  • Rubber septum
  • Nitrogen manifold
  • 20‐G stainless steel needles
  • 5‐mL syringes
  • 65°C or 80°C oil bath
  • Magnetic stirrer/hot plate
  • 100‐µL glass syringes
  • TLC plate, silica‐coated glass plate with fluorescent indicator (Merk silica gel 60 F 254)
  • Reverse‐phase (RP) silica gel‐coated glass plate with fluorescent indicator (Merk silica gel 60 RP‐18 F 254s)
  • 254‐nm UV lamp
  • Rotary evaporator equipped with a water aspirator
  • Normal phase silica gel, SiliaFlash Irregular Silica Gels ‐ P60 Silica (40 to 63 µm; Silicycle)
  • RP silica gel, C18, carbon 17%, particle size 40 to 63 µm (Silicycle)
  • Additional reagents and equipment for performing thin‐layer chromatography (TLC; appendix 3D) and silica gel column chromatography ( appendix 3E)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Agrofoglio, L.A., Gillaizeau, I., and Saito, Y. 2003. Palladium‐assisted routes to nucleosides. Chem. Rev. 103:1875‐1916.
   Ahmadian, M., Zhang, P., and Bergstrom, D.E. 1998. A comparative study of the thermal stability of oligodeoxyribonucleotides containing 5‐substituted 2′‐deoxyuridines. Nucleic Acids Res. 26:3127‐3135.
   Beilstein, A.E. and Grinstaff, M.W. 2001. Synthesis and characterization of ferrocene‐labeled oligodeoxynucleotides. J. Organomet. Chem. 637‐639:398‐406.
   Bråthe, A., Gundersen, L.‐L., Nissen‐Meyer, J., Rise, F., and Spilsberg, B. 2003. Cytotoxic Activity of 6‐Alkynyl‐ and 6‐Alkenylpurines. Bioorg. Med. Chem. Lett. 13:877‐880.
   Brázdilová, P., Vrábel, M., Pohl, R., Pivoňková, H., Havran, L., Hocek, M., and Fojta, M. 2007. Ferrocenylethynyl derivatives of nucleoside triphosphates: Synthesis, incorporation, electrochemistry, and bioanalytical applications. Chem. Eur. J. 13:9527‐9533.
   Cho, J.H. and Shaughnessy, K.H. 2011. Aqueous‐phase heck coupling of 5‐iodouridine and alkenes under phosphine‐free conditions. Synlett. 20:2963‐2966.
   Cho, J.H., Prickett, C.D., and Shaughnessy, K.H. 2010. Efficient Sonogashira coupling of unprotected halonucleosides in aqueous solvents using water‐soluble palladium catalysts. Eur. J. Org. Chem. 68:3678‐3683.
   Collier, A. and Wagner, G. 2006. A facile two‐step synthesis of 8‐arylated guanosine mono‐ and triphosphates (8‐aryl GXPs). Org. Biomol. Chem. 4:4526‐4532.
   Crisp, G.T. and Flynn, B.L. 1993. Palladium‐catalyzed coupling of terminal alkynes with 5‐(trifluoromethanesulfonyloxy)pyrimidine nucleosides. J. Org. Chem. 58:6614‐6619.
   Cristofoli, W.A., Wiebe, L.I., De Clercq, E., Andrei, G., Snoeck, R., Balzarini, J., and Knaus, E.E. 2007. 5‐Alkynyl analogs of arabinouridine and 2′‐deoxyuridine: Cytostatic activity against herpes simplex virus and varicella‐zoster thymidine kinase gene‐transfected cells. J. Med. Chem. 50:2851‐2857.
   De Clercq, E., Descamps, J., Balzarini, J., Giziewicz, J., Barr, P.J., and Robinson, M.J. 1983. Nucleic Acid Related Compounds. 40. Synthesis and biological activities of 5‐alkynyluracil nucleosides. J. Med. Chem. 26:661‐666.
   Dioubankova, N.N., Malakhov, A.D., Shenkarev, Z.O., and Korshun, V.A. 2004. Oligonucleotides containing new fluorescent 1‐phenylethynylpyrene and 9,10‐bis (phenylethynyl) anthracene uridine‐2′‐carbamates: Synthesis and properties. Tetrahedron 60:4617‐4626.
   Fillastre, J.P., Godin, M., Legallicier, B., Chretien, P., Bidault, R., Gillotin, C., Wooton, R., Posner, J., and Peck, R.W. 1996. Pharmacokinetics of netivudine, a potent anti‐varicella zoster virus drug, in patients with renal impairment. J. Antimicrob. Chemother. 37:965‐974.
   Firth, A.G., Fairlamb, I.J.S., Darley, K., and Baumann, C.G. 2006. Sonogashira alkynylation of unprotected 8‐brominated adenosines and guanosines: fluorescence properties of compact conjugated acetylenes containing a purine ring. Tetrahedron Lett. 47:3529‐3533.
   Gannett, P.M. and Sura, T.P. 1993. An improved synthesis of 8‐bromo‐2′‐deoxyguanosine. Synth. Commun. 23:1611‐1615.
   Gannett, P.M., Darian, E., Powell, J., Johnson, E.M. II, Mundoma, C., Greenbaum, N.L., Ramsey, C.M., Dalal, N.S., and Budil, D.E. 2002. Probing triplex formation by EPR spectroscopy using a newly synthesized spin label for oligonucleotides. Nucleic Acids Res. 30:5328‐5337.
   Gulyás, H., Szölló´sy, Á., Hanson, B.E., and Bakos, J. 2002. A direct approach to selective sulfonation of triarylphosphines. Tetrahedron Lett. 43:2543‐2546.
   He, G.‐X., Krawczyk, S.H., Swaminathan, S., Shea, R.G., Dougherty, J.P., Terhorst, T., Law, V.S., Griffin, L.C., Coutré, S., and Bischofberger, N. 1998. N2‐ and C8‐substituted oligodeoxynucleotides with enhanced thrombin inhibitory activity in vitro and in vivo. J. Med. Chem. 41:2234‐2242.
   Hocek, M. 2003. Syntheses of purines bearing carbon substituents in positions 2, 6, or 8 by metal‐ or organometal‐mediated C‐C bond‐forming reactions. Eur. J. Org. Chem. 245‐254.
   Hwang, G.T., Seo, Y.J., Kim, S.J., and Kim, B.H. 2004. Fluorescent oligonucleotide incorporating 5‐(1‐ethynylpyrenyl)‐2′‐deoxyuridine: Sequence‐specific fluorescence changes upon duplex formation. Tetrahedron Lett. 45:3543‐3546.
   Ikehara, M. and Kaneko, M. 1970. Purine cyclonucleosides—8. Selective sulfonylation of 8‐bromoadenosine derivatives and an alternate synthesis of 8,2′‐ and 8,3′‐S‐cyclonucleosides. Tetrahedron 26:4231‐4239.
   Jiao, G.‐S., Kim, T.G., Topp, M.R., and Burgess, K. 2004. A blue‐to‐red energy‐transfer thymidine analogue that functions in DNA. Org. Lett. 6:1701‐1704.
   Kalachova, L., Pohl, R., and Hocek, M. 2012. Synthesis of nucleoside mono‐ and triphosphates bearing oligopyridine ligands, their incorporation into DNA and complexation with transition metals. Org. Biomol. Chem. 10:49‐55.
   Lakshman, M.K. 2005. Synthesis of biologically important nucleoside analogs by palladium‐catalyzed C‐N bond formation. Curr. Org. Synth. 2:83‐112.
   Obeid, S., Yulikov, M., Jeschke, G., and Marx, A. 2008. Enzymatic synthesis of multiple spin‐labeled DNA. Angew. Chem. Intl. Ed. 47:6782‐6785.
   Okamoto, A., Tainaka, K., and Saito, I. 2003. Clear distinction of purine bases on the complementary strand by a fluorescence change of a novel fluorescent nucleoside. J. Am. Chem. Soc. 125:4972‐4973.
   Rai, D., Johar, M., Manning, T., Agrawal, B., Kunimoto, D.Y., and Kumar, R. 2005. Design and studies of novel 5‐substituted alkynyl‐pyrimidine nucleosides as potent inhibitors of mycobacteria. J. Med. Chem. 48:7012‐7017.
   Sági, G., Ötvös, L., Ikeda, S., Andrei, G., Snoeck, R., and De Clercq, E. 1994. Synthesis and antiviral activities of 8‐alkynyl‐, 8‐alkenyl‐, and 8‐alkyl‐2′‐deoxyadenosine analogs. J. Med. Chem. 37:1307‐1311.
   Saito, Y., Matsumoto, K., Bag, S.S., Ogasawara, S., Fujimoto, K., Hanawa, K., and Saito, I. 2008. C8‐alkynyl‐ and alkylamino substituted 2′‐deoxyguanosines: A universal linker for nucleic acids modification. Tetrahedron 64:3578‐3588.
   Strube, T., Scheimann, O., MacMillan, F., Prisner, T., and Engels, J.W. 2001. A new facile method for spin‐labeling of oligonucleotides. Nucleosides Nucleotides Nucleic Acids 20:1271‐1274.
   Thoresen, L.H., Jiao, G.‐S., Haaland, W.C., Metzker, M.L., and Burgess, K. 2003. Rigid, conjugated, fluoresceinated thymidine triphosphates: Syntheses and polymerase mediated incorporation into DNA analogs. Chem. Eur. J. 9:4603‐4610.
   Vrábel, M., Pohl, R., Klepetářová, B., Votruba, I., and Hocek, M. 2007. Synthesis of 2′‐deoxyadenosine nucleosides bearing bipyridine‐type ligands and their Ru‐complexes in position 8 through cross‐coupling reactions. Org. Biomol. Chem. 5:2849‐2857.
   Wagner, C., Rist, M., Mayer‐Enhart, E., and Wagenknecht, H.‐A. 2005. 1‐Ethynylpyrene‐modified guanine and cytosine as optical labels for DNA hybridization. Org. Biomol. Chem. 3:2062‐2063.
   Weizman, H. and Tor, Y. 2002. Redox‐active metal‐containing nucleotides: Synthesis, tunability, and enzymatic incorporation into DNA. J. Am. Chem. Soc. 124:1568‐1569.
   Western, E.C., Daft, J.R., Johnson, E.M. II, Gannett, P.M., and Shaughnessy, K.H. 2003. Efficient, one‐step Suzuki arylation of unprotected halonucleosides using water‐soluble palladium catalysts. J. Org. Chem. 68:6767‐6774.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library