Solid‐Phase Supports for Oligonucleotide Synthesis

Andrei P. Guzaev1

1 AM Chemicals LLC, Oceanside, California
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 3.1
DOI:  10.1002/0471142700.nc0301s53
Online Posting Date:  June, 2013
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit attempts to provide a reasonably complete inventory of over 280 solid supports available to oligonucleotide chemists for preparation of natural and 3′‐modified oligonucleotides. Emphasis is placed on non‐nucleosidic solid supports. The relationship between the structural features of linkers and their behavior in oligonucleotide synthesis and deprotection is discussed wherever the relevant observations are available. Curr. Protoc. Nucleic Acid Chem. 53:3.1.1‐3.1.60. © 2013 by John Wiley & Sons, Inc.

Keywords: nucleic acid chemistry; oligonucleotides; solid‐phase synthesis; molecular biology

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Solid Support Linkers for Oligonucleotide Synthesis
  • Conclusions
  • Appendix
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

   Achilles, K. and von Kiedrowski, G. 2005. Kinetic model studies on the chemical ligation of oligonucleotides via hydrazine formation. Bioorg. Med. Chem. Lett. 15:1229‐1233.
   Adamczyk, M., Chan, C.M., Fino, J.R., and Mattingly, P.G. 2000. Synthesis of 5‐ and 6‐Hydroxymethylfluorescein Phosphoramidites. J. Org. Chem. 65:596‐601.
   Adinolfi, M., Barone, G., De Napoli, L., Iadonisi, A., and Piccialli, G. 1998. Use of controlled pore glass in solid phase oligosaccharide synthesis. Application to the semiautomated synthesis of a glyconucleotide conjugate. Tetrahedron Lett. 39:1953‐1956.
   Adinolfi, M., De Napoli, L., Di Fabio, G., Guariniello, L., Iadonisi, A., Messere, A., Montesarchio, D., and Piccialli, G. 2001. Solid‐phase synthesis of glyco‐oligonucleotide conjugates. Synlett 745‐748.
   Adinolfi, M., De Napoli, L., Di Fabio, G., Iadonisi, A., Montesarchio, D., and Piccialli, G. 2002. Solid phase synthesis of oligonucleotides tethered to oligo‐glucose phosphate tails. Tetrahedron 58:6697‐6704.
   Adinolfi, M., De Napoli, L., Di Fabio, G., Iadonisi, A., and Montesarchio, D. 2004. Modulating the activity of oligonucleotides by carbohydrate conjugation: Solid phase synthesis of sucrose‐oligonucleotide hybrids. Org. Biomol. Chem. 2:1879‐1886.
   Agrawal, S. 1994. Functionalization of oligonucleotides with amino groups and attachment of amino specific reporter groups. In Methods in Molecular Biology, Vol. 26: Protocols for Oligonucleotide Conjugates. (S. Agrawal, ed.) pp. 93‐120. Humana Press Inc., Totowa, New Jersey.
   Agrawal, S., Goodchild, J., Civeira, M.P., Thornton, A.H., Sarin, P.S., and Zamecnik, P.C. 1988. Oligodeoxynucleotide phosphoramidates and phosphorothioates as inhibitors of human immunodeficiency virus. Proc. Nat. Acad. Sci. U.S.A. 85:7079‐7083.
   Alefelder, S., Patel, B.K., and Eckstein, F. 1998. Incorporation of terminal phosphorothioates into oligonucleotides. Nucleic Acids Res. 26:4983‐4988.
   Alvarez, K., Vasseur, J.‐J., Beltran, T., and Imbach, J.‐L. 1999. Photo‐cleavable protecting groups as nucleobase protections allowed the solid‐phase synthesis of base‐sensitive SATE‐prooligodeoxyribonucleotides. J. Org. Chem. 64:6319‐6328.
   Amato, J., Galeone, A., Oliviero, G., Mayol, L., Piccialli, G., and Varra, M. 2004. Synthesis of 3′‐3′‐linked pyrimidine oligonucleotides containing an acridine moiety for alternate strand triple helix formation. Eur. J. Org. Chem. 2004:2331‐2336.
   Anderson, E., Brown, T., and Picken, D. 2003. Novel photocleavable universal support for oligonucleotide synthesis. Nucleosides Nucleotides Nucleic Acids 22:1403‐1406.
   Anderson, K.M., Jaquinod, L., Jensen, M.A., Ngo, N., and Davis, R.W. 2007. A novel catechol‐based universal support for oligonucleotide synthesis. J. Org. Chem. 72:9875‐9880.
   Asanuma, H., Shirasuka, K., Takarada, T., Kashida, H., and Komiyama, M. 2003. DAN ‐dye conjugates for controllable H* aggregation. J. Am. Chem. Soc. 125:2217.
   Asseline, U. and Thuong, N.T. 1989. Solid‐phase synthesis of modified oligodeoxyribonucleotides with an acridine derivative or a thiophosphate group at their 3′ end. Tetrahedron Lett. 30:2521‐2524.
   Asseline, U. and Thuong, N.T. 1990. New solid‐phase for automated synthesis of oligonucleotides containing an amino‐alkyl linker at their 3′ end. Tetrahedron Lett. 31:81‐84.
   Asseline, U., Bonfils, E., Kurfurst, R., Chassignol, M., Roig, V., and Thuong, N.T. 1992. Solid‐phase preparation of 5′,3′‐heterobi‐functional oligodeoxynucleotides using modified solid supports. Tetrahedron 48:1233‐1254.
   Asseline, U., Bonfils, E., Dupret, D., and Thuong, N.T. 1996. Synthesis and binding properties of oligonucleotides covalently linked to an acridine derivative: New study of the influence of the dye attachment site. Bioconjug. Chem. 7:369‐379.
   Aubert, Y., Bourgerie, S., Meunier, L., Mayer, R., Roche, A.‐C., Monsigny, M., Thuong, N.T., and Asseline, U. 2000. Optimized synthesis of phosphorothioate oligodeoxyribonucleotides substituted with a 5′‐protected thiol function and a 3′‐amino group. Nucleic Acids Res. 28:818‐825.
   Ausín, C., Kauffman, J.S., Duff, R.J., Shivaprasad, S., and Beaucage, S.L. 2010. Assessment of heat‐sensitive thiophosphate protecting groups in the development of thermolytic DNA oligonucleotide prodrugs. Tetrahedron 66:68‐79.
   Aviñó, A., Garcia, R.G., Albericio, F., Mann, M., Wilm, M., Neubaurer, G., and Eritja, R. 1996. New carbamate supports for the preparation of 3′‐amino‐modified oligonucleotides. Bioorg. Med. Chem. Lett. 4:1649‐1658.
   Aviñó, A., Navarro, I., Farrera‐Sinfreu, J., Royo, M., Aymamí, J., Delgado, A., Llebaria, A., Albericio, F., and Eritja, R. 2008. Solid‐phase synthesis of oligomers carrying several chromophore units linked by phosphodiester backbones. Bioorg. Med. Chem. Lett. 18:2306‐2310.
   Aviñó, A., Ocampo, S.M., Perales, J.C., and Eritja, R. 2012. Synthesis and in vitro inhibition properties of siRNA conjugates carrying acridine and quindoline moieties. Chem. Biodivers. 9:557‐566.
   Azhayev, A.V. 1999. A new universal solid support for oligonucleotide synthesis. Tetrahedron 55:787‐800.
   Azhayev, A.V. and Antopolsky, M.L. 2001. Amide group assisted 3′‐dephosphorylation of oligonucleotides synthesized on universal A‐supports. Tetrahedron 57:4977‐4986.
   Azhayev, A.V., Gouzaev, A., Hovinen, J., Azhayeva, E., and Lönnberg, H. 1993. Analogues of oligonucleotides containing 3′‐deoxy‐β‐D‐psicothymidine. Tetrahedron Lett. 34:6435‐6438.
   Azhayev, A.V., Antopolsky, M.L., Tennilä, T.M.L., Mackie, H., and Randolph, J.B. 2004. A comparative study of commercially available universal supports for oligonucleotide synthesis. Glen Report 17(2).
   Azhayev, A.V., Antopolsky, M.L., Tennilä, T.M.L., Mackie, H., and Randolph, J.B. 2005. A comparative study of commercially available universal supports for oligonucleotide synthesis. Genet. Eng. News 25.
   Azhayeva, E., Azhayev, A., Guzaev, A., Hovinen, J., and Lönnberg, H. 1995a. Looped oligonucleotides form stable hybrid complexes with a single‐stranded DNA. Nucleic Acids Res. 23:1170‐1176.
   Azhayeva, E., Azhayev, A., Guzaev, A., Lönnberg, H. 1995b. Selective binding of looped oligonucleotides to a single‐stranded DNA and its influence on replication in vitro. Nucleic Acids Res. 23:4255‐4261.
   Balakin, K.V., Korshun, V.A., Mikhalev, I.I., Maleev, G.V., Malakhov, A.D., Prokhorenko, I.A., and Berlin, Yu.A. 1998. Conjugates of oligonucleotides with polyaromatic fluorophores as promising DNA probes. Biosens. Bioelectron. 13:771‐778.
   Basu, S. and Wickstrom, E. 1995. Solid phase synthesis of a D‐peptide‐phosphorothioate oligodeoxynucleotide conjugate from two arms of a polyethylene glycol‐polystyrene support. Tetrahedron Lett. 36:4943‐4946.
   Bayard, B., Bisbal, C., and Lebleu, B. 1986. Activation of ribonuclease L by (2′‐5′)(A)4‐poly(L‐lysine) conjugates in intact cells. Biochemistry 25:3730‐3736.
   Beaucage, S.L. and Caruthers, M.H. 1981. Deoxynucleoside phosphoramidites. A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett. 22:1859‐1862.
   Beaucage, S.L. and Iyer, R.P. 1992. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48:2223‐2311.
   Beaucage, S.L. and Iyer, R.P. 1993. The functionalization of oligonucleotides via phosphoramidite derivatives. Tetrahedron 49:1925‐1963.
   Beardsley, K. and Cantor, C.R. 1970. Studies of transfer RNA tertiary structure by singlet‐singlet energy transfer. Proc. Natl. Acad. Sci. U.S.A. 65:39‐46.
   Behrens, C. and Dahl, O. 1999. Synthesis of achiral linker reagents for direct labeling of oligonucleotides on solid supports. Nucleosides Nucleotides 18:291‐305.
   Behrens, C., Petersen, K.H., Egholm, M., Nielsen, J., Buchardt, O., and Dahl, O. 1995. A new achiral reagent for the incorporation of multiple amino groups into oligonucleotides. Bioorg. Med. Chem. Lett. 5:1785‐1790.
   Bellon, L. and Wincott, F. 2000. Oligonucleotide synthesis. In Solid‐Phase Synthesis: A Practical Guide (S.A. Kates and F. Albericio, eds.) pp. 475‐528. Marcel Dekker, New York.
   Ben Gaied, N., Zhao, Z., Gerrard, S.R., Fox, K.R., and Brown, T. 2009. Potent triple helix stabilization by 5′,3′‐modified triplex‐forming oligonucleotides. ChemBioChem 10:1839‐1851.
   Bonfils, E. and Thuong, N.T. 1991. Solid phase synthesis of 5′, 3′‐bifunctional oligodeoxyribonucleotides bearing a masked thiol group at the 3′‐end. Tehahedron Lett. 32:3053‐3056.
   Bower, M., Summers, M.F., Kell, B., Hoskins, J., Zon, G., and Wilson, W.D. 1987. Synthesis and characterization of oligodeoxyribonucleotides containing terminal phosphates. NMR, UV spectroscopic and thermodynamic analysis of duplex formation of [d(pGGATTCC)]2, [d(GGAAT‐TCCp)]2 and [d(pGGAATTCCp)]2. Nucleic Acids Res. 15:3531‐3547.
   Broker, T.R., Angerer, L.M., Yen, P.H., Hershey, N.D., and Davidson, N. 1978. Electron microscopic visualization of tRNA genes with ferritin‐avidin: Biotin labels. Nucleic Acids Res. 5:363‐384.
   Caruthers, M.H. 1985. Gene synthesis machines: DNA chemistry and its uses. Science 230:281‐285.
   Chakhmakhcheva, O.G., Buryakova, A.A., Choob, M.V., Kalinkina, A.L., Efimov, V.A., and Rando, R.F. 1997. Synthesis of circular oligonucleotide conjugates. Nucleosides Nucleotides 16:1465‐1468.
   Chaltin, P., Margineanu, A., Marchand, D, Van Aerschot, A., Rozenski, J., De Schryver, F., Herrmann, A., Muellen, K., Juliano, R., Fisher, M.H., Kang, H., De Feyter, S., and Herdewijn, P. 2005. Delivery of antisense oligonucleotides using cholesterol‐modified sense dendrimers and cationic lipids. Bioconjug. Chem. 16:827‐836.
   Cheruvallath, Z.S., Cole, D.L., and Ravikumar, V.T. 2003. A novel solid support for synthesis of oligonucleotide 3′‐phosphorothioate monoesters. Bioorg. Med. Chem. Lett. 13:281‐284.
   Chillemi, R., Aleo, D., Granata, G., and Sciuto, S. 2006. Synthesis of very short chain lysophosphatidyloligodeoxynucleotides. Bioconjug. Chem. 17:1022‐1029.
   Christensen, U. B. and Pedersen, E.B. 2002. Intercalating nucleic acids containing insertions of 1‐O‐(1‐pyrenylmethyl)glycerol: Stabilisation of dsDNA and discrimination of DNA over RNA. Nucleic Acids Res. 30:4918‐4925.
   Churchich, J.E. 1963. Fluorescence studies on soluble ribonucleic acid (s‐RNA) labeled with acrifiavine. Biochim. Biophys. Acta 75:274‐276.
   Cieślak, J., Grajkowski, A., Livengood, V., and Beaucage, S.L. 2004. Thermolytic 4‐methylthio‐1‐butyl group for phosphate/thiophosphite protection in solid‐phase synthesis of DNA oligonucleotides. J. Org. Chem. 69:2509‐2515.
   Cosstick, R. and Eckstein, F. 1985. Synthesis of d(GC) and d(CG) octamers containing alternating phosphorothioate linkages: Effect of the phosphorothioate group on the B‐Z transition. Biochemistry 24:3630‐3638.
   Crea, R. and Horn, T. 1980. Synthesis of oligonucleotides on cellulose by a phosphotriester method. Nucleic Acids Res. 8:2331‐2348.
   deBear, J.S., Hayes, J.A., Koleck, M.P., and Gough, G.R. 1987. A universal glass support for oligonucleotide synthesis. Nucleosides Nucleotides 6:821‐830.
   Dell'Aquila, C., Imbach, J.L., and Rayner, B. 1997. Photolabile linker for the solid‐phase synthesis of base‐sensitive oligonucleotides. Tetrahedron Lett. 38:5289‐5292.
   De Napoli, L., Di Fabio, G., Messere, A., Montesarchio, D., Musumeci, D., and Piccialli, G. 1999a. New 3′‐3′ linkers for alternate strand triplex forming oligonucleotides. Nucleosides Nucleotides 18:1639‐1640.
   De Napoli, L., Di Fabio, G., Messere, A., Montesarchio, D., Musumeci, D., and Piccialli, G. 1999b. Synthesis and characterization of new 3′‐3′ linked oligodeoxyribonucleotides for alternate strand triple helix formation. Tetrahedron 55:9899‐9914.
   De Napoli, L., De Luca, S., Di Fabio, G., Messere, A., Montesarchio, D., Morelli, G., Piccialli, G., and Tesauro, D. 2000. A facile solid‐phase strategy for the synthesis of oligonucleotide‐tetraphenylporphyrin conjugates. Eur. J. Org. Chem. 1013‐1018.
   De Vos, M.J., Van Elsen, A., and Bollen, A. 1994. New non nucleosidic phosphoramidites for the solid‐phase multi‐labeling of oligodeoxyribonucleotides: Comb‐ and multifork‐like structures. Nucleosides Nucleotides 13:2245‐2265.
   Di Fabio, G., De Capua, A., De Napoli, L., Montesarchio, D., Piccialli, G., Rossi, F., and Benedetti, E. 2001. A new strategy for the solid‐phase synthesis of glycoconjugate biomolecules. Synlett 341‐344.
   Dioubankova, N.N., Malakhov, A.D., Stetsenko, D.A., Korshun, V.A., and Gait, M.J. 2002. (R)‐2,4‐dihydroxybutyramide seco‐pseudonucleosides: New versatile homochiral synthons for synthesis of modified oligonucleotides. Org. Lett. 4:4607‐4610.
   Dioubankova, N.N., Malakhov, A.D., Stetsenko, D.A., Gait, M.J., and Korshun, V.A. 2006. Phosphoramidites and solid supports based on N‐substituted 2,4‐dihydroxybutyramides: Universal reagents for synthesis of modified oligonucleotides. Tetrahedron 62:6762‐6773.
   Dixon, J.S. and Lipkin, D. 1954. Spectrophotometric determination of vicinal glycols‐application to the determination of ribofuranosides. Anal. Chem. 26:1092‐1093.
   Dubey, I., Pratviel, G., and Meunier, B. 1998. Modification of the thiourea linkage of a fluorescein‐oligonucleotide conjugate to a guanidinium motif during ammonia deprotection. Bioconjug. Chem. 9:627‐632.
   Edupuganti, O.P., Defrancq, E., and Dumy, P. 2003. Head‐to‐tail oxime cyclization of oligodeoxynucleotides for the efficient synthesis of circular DNA analogs. J. Org. Chem. 68:8708‐8710.
   Edupuganti, O.P., Singh, Y., Defrancq, E., and Dumy, P. 2004a. New strategy for the synthesis of 3′,5′‐bi‐functionalized oligonucleotide conjugates through sequential formation of chemoselective oxime bonds. Chem. Eur. J. 10:5988‐5995.
   Edupuganti, O.P., Renaudet, O., Defrancq, E., and Dumy, P. 2004b. The oxime bond formation as an efficient chemical tool for the preparation of 3′,5′‐bifunctionalised oligodeoxyribonucleotides. Bioorg. Med. Chem. Lett. 14:2839‐2842.
   Efimov, V.A., Buryakova, A.A., Reverdatto, S.V., Chakhmakhcheva, O.G., and Ovchinnikov, Y.A. 1983. Rapid synthesis of long‐chain deoxyribooligonucleotides by the N‐methylimidazole phosphotriester method. Nucleic Acids Res. 11:8369‐8387.
   Efimov, V.A., Kalinkina, A.L., and Chakhmakhcheva, O.G. 1995. A convenient support for the synthesis of oligonucleotide 3′‐phosphates. Bioorg. Khim. 21:612‐616.
   Efimov, V.A., Buryakova, A.A., Kalinkina, A.L., Choob, M.V., Chakhmakhcheva, O.G., Ojwang, J.O., and Rando, R.F. 1998. Convenient approaches to the synthesis of oligonucleotide macrocycles containing non‐nucleotide linkers. Nucleosides Nucleotides 17:379‐396.
   Epe, B., Woolley, P., Steinhäuser, K.G., and Littlechild, J. 1982. Distance measurement by energy transfer: The 3′ end of 16S RNA and proteins S4 and S17 of the ribosome of Escherichia coli. Eur. J. Biochem. 129:211‐219.
   Eritja, R., Robles, J., Fernandez‐Forner, D., Albericio, F., Giralt, E., and Pedroso, E. 1991. NPE‐resin, a new approach to the solid‐phase synthesis of protected peptides and oligonucleotides. 1. Synthesis of the supports and their application to oligonucleotide synthesis. Tetrahedron Lett. 32:1511‐1514.
   Felder, E., Schwyzer, R., Charubala, R., Pfleiderer, W., and Schulz, B. 1984. A new solid phase approach for rapid synthesis of oligonucleotides bearing a 3′‐terminal phosphate group. Tetrahedron Lett. 25:3967‐3970.
   Ferreira, F., Meyer, A., Vasseur, J.‐J., and Morvan, F. 2005. Universal solid supports for the synthesis of oligonucleotides via a transesterification of H‐phosphonate diester linkage. J. Org. Chem. 70:9198‐9206.
   Forget, D., Renaudet, O., Boturyn, D., Defrancq, E., and Dumy, P. 2001. 3′‐Oligonucleotides conjugation via chemoselective oxime bond formation. Tetrahedron Lett. 42:9171‐9174.
   Freville, F., Pierre, N., and Moreau, S. 2006. Efficient stabilization of oligonucleotide duplexes through terpyridine metal complexes. Can. J. Chem. 84:854‐858.
   Galeone, A., Mayol, L., Oliviero, G., Rigano, D., and Varra, M. 2001. Solid‐phase synthesis of oligonucleotides containing a bipyridine ligand at the 3′‐3′ inversion of polarity site. Bioorg. Med. Chem. Lett. 11:383‐386.
   Gamper, H.B., Reed, M.W., Cox, T., Virosco, J.S., Adams, A.D., Gall, A.A., Scholler, J.K., and Meyer, R.B. Jr. 1993. Facile preparation of nuclease resistant 3′ modified oligodeoxynucleotides. Nucleic Acids Res. 21:145‐150.
   Glen Research. 2001. A new simplified 3′‐amino‐modifier CPG. Glen Report 14(1).‐12.html.
   Glen Research. 2002. Comparison of deprotection methods for 3′‐PT‐amino‐modifier CPG. Glen Report 15(1).‐12.html.
   Glen Research. 2008. New Universal Support—Glen Unysupport. Glen Report 20(2).‐25.html.
   Glen Research. 2011. Technical brief—chemical phosphorylation—considering the options. Glen Report 23(1).‐17.html.
   Goodchild, J., Agrawal, S., Civeira, M. P., Sarin, P.S., Sun, D., and Zamecnik, P.C. 1988. Inhibition of human immunodeficiency virus replication by antisense oligodeoxynucleotides. Proc. Nat. Acad. Sci. U.S.A. 85:5507‐5511.
   Gough, G.R., Brunden, M.J., and Gilham, P.T. 1983. 2′(3′)‐O‐Benzoyluridine 5′ linked to glass: An all purpose support for solid phase synthesis of oligodeoxyribonucleotides. Tetrahedron Lett. 24:5321‐5324.
   Grajkowski, A., Wilk, A., Chmielewski, M.K., Phillips, L.R., and Beaucage, S.L. 2001. The 2‐(N‐formyl‐N‐methyl)aminoethyl group as a potential phosphate/thiophosphite protecting group in solid‐phase oligonucleotide synthesis. Org. Lett. 3:1287‐1290
   Grajkowski, A., Ausín, K., Kauffman, J.S., Snyder, J., Hess, S., Lloyd, J.R., and Beaucage, S.L. 2007. Solid‐phase synthesis of thermolytic DNA oligonucleotides functionalized with a single 4‐hydroxy‐1‐butyl or 4‐phosphato‐thiophosphato‐1‐butyl thiophosphate protecting group. J. Org. Chem. 72:805‐815.
   Grajkowski, A., Cieślak, J., Kauffman, J.S., Duff, R.J., Norris, S., Freedberg, D.I., and Beaucage, S.L. 2008. Thermolytic release of covalently linked DNA oligonucleotides and their conjugates from controlled‐pore glass at near neutral pH. Bioconjug. Chem. 19:1696‐1706.
   Greenberg, M.M. 1993. Photochemical cleavage of oligonucleotides from solid phase supports. Tetrahedron Lett. 34:251‐254.
   Greenberg, M.M. 1995. Photochemical release of protected oligodeoxyribonucleotides containing 3′‐glycolate termini. Tetrahedron 51:29‐38.
   Greenberg, M.M. and Gilmore, J.L. 1994. Cleavage of oligonucleotides from solid‐phase supports using O‐nitrobenzyl photochemistry. J. Org. Chem. 59:746‐753.
   Greenberg, M.M., Matray, T.J., Kahl, J.D., Yoo, D.J., and McMinn, D.L. 1998. Optimization and mechanistic analysis of oligonucleotide cleavage from palladium‐labile solid‐phase synthesis supports. J. Org. Chem. 63:4062‐4068.
   Grijalvo, S., Ocampo, S.M., Perales, J.C., and Eritja, R. 2010. Synthesis of oligonucleotides carrying amino lipid groups at the 3′‐end for RNA interference studies. J. Org. Chem. 75:6806‐6813.
   Gryaznov, S.M. and Letsinger, R.L. 1992. A new approach to synthesis of oligonucleotides with 3′ phosphoryl groups. Tetrahedron Lett. 33:4127‐4128.
   Gryaznov, S.M. and Letsinger, R.L. 1993. Template controlled coupling and recombination of oligonucleotide blocks containing thiophosphoryl groups. Nucleic Acids Res. 21:1403‐1408.
   Gupta, K.C., Sharma, P., Sathyanarayana, S., and Kumar, P. 1990. A universal solid support for the synthesis of 3′‐thiol group containing oligonucleotides. Tetrahedron Lett. 31:2471‐2474.
   Gupta, K.C., Sharma, P., Kumar, P., and Sathyanarayana, S. 1991. A general method for the synthesis of 3′‐sulfhydryl and phosphate group containing oligonucleotides. Nucleic Acids Res. 19:3019‐3025.
   Guschin, D., Yershov, G., Zaslavsky, A., Gemmell, A., Shick, V., Proudnikov, D., Arenkov, P., and Mirzabekov, A. 1997. Manual manufacturing of oligonucleotide, DNA, and protein microchips. Anal. Biochem. 250:203‐211.
   Guzaev, A.P. 1991. An efficient synthesis of 3′‐mercaptoalkylated oligodeoxyribonucleotides on the universal solid support. Nucleic Acids Res. Symp. Ser. 1991:236.
   Guzaev, A.P. and Lönnberg, H. 1997. A novel solid support for synthesis of 3′‐phosphorylated chimeric oligonucleotides containing internucleosidic methyl phosphotriester and methylphosphonate linkages. Tetrahedron Lett. 38:3989‐3992.
   Guzaev, A.P. and Lönnberg, H. 1999. Solid support synthesis of ester linked hydrophobic conjugates of oligonucleotides. Tetrahedron 55:9101‐9116.
   Guzaev, A.P. and Manoharan, M. 2000. A novel phosphate protection for oligonucleotide synthesis: The 2‐[(1‐naphthyl)carbamoyloxy]ethyl (NCE) group. Tetrahedron Lett. 41:5623‐5626.
   Guzaev, A.P. and Manoharan, M. 2001a. Novel reagents for terminal phosphorylation and thiophosphorylation of synthetic oligonucleotides. Tetrahedron Lett. 42:4769‐4773.
   Guzaev, A.P. and Manoharan, M. 2001b. 2‐benzamidoethyl group: A novel type of phosphate protecting group for oligodeoxynucleotide synthesis. J. Am. Chem. Soc. 123:783‐793.
   Guzaev, A.P. and Manoharan, M. 2003. A conformationally preorganized universal solid support for efficient oligonucleotide synthesis. J. Am. Chem. Soc. 125:2380‐2381.
   Guzaev, A.P. and Manoharan, M. 2004. Preparation of universal oxabicycloheptane building blocks and polymer support media for synthesis of oligonucleotides and their analogs. U.S. Pat. Appl. Publ. US20040152905.
   Guzaev, A.P., Azhayeva, E., Hovinen, J., Azhayev, A., and Lönnberg, H. 1994. Synthesis and primer properties of oligonucleotides containing 3′‐deoxypsicothymidine units, labelled with fluorescein at the 1′‐position. Bioconjug. Chem. 5:501‐503.
   Guzaev, A.P., Hovinen, J., Azhayev, A., and Lönnberg, H. 1995. A general approach for the hydroxy group functionalyzation of synthetic oligonucleotides. Nucleosides Nucleotides 14:833‐837.
   Guzaev, A.P., Salo, H., Azhayev, A., and Lönnberg, H. 1996. Novel non‐nucleosidic building blocks for the preparation of multilabeled oligoribonucleotides. Bioconjug. Chem. 7:240‐248.
   Guzaev, A.P., Boyode, B., Balow, G., Tivel, K.L., and Manoharan, M. 1998. Synthesis of 14C‐radiolabeled oligonucleotides with a novel phosphoramidite reagent. Bioorg. Med. Chem. Lett. 8:1123‐1126.
   Guzaev, A.P., Azhayev, A., and Lönnberg, H. 1999. Chemical phosphorylation of oligonucleotides and reactants used therefore. US Patent 5,959,090.
   Habus, I., Zhao, Q., and Agrawal, S. 1995. Synthesis, hybridization properties, nuclease stability, and cellular uptake of the oligonucleotide‐amino‐β‐cyclodextrins and adamantane conjugates. Bioconjug. Chem. 6:327‐331.
   Hakala, H. and Lönnberg, H. 1997. Time‐resolved fluorescence detection of oligonucleotide hybridization on a single microparticle: Covalent immobilization of oligonucleotides and quantitation of a model system. Bioconjug. Chem. 8:232‐237.
   Hardy, P.M., Holland, D., Scott, S., Garman, A.J., Newton, C.R., and McLean, M.J. 1994. Reagents for the preparation of two oligonucleotides per synthesis (TOPS). Nucleic Acids Res. 22:2998‐3004.
   Hausch, F. and Jäschke, A. 1998. A novel carboxy‐functionalized photo‐cleavable dinucleotide analog for the selection of RNA catalysts. Tetrahedron Lett. 39:6157‐6158.
   Hausch, F. and Jäschke, A. 2001. Multifunctional dinucleotide analogs for the generation of complex RNA conjugates. Tetrahedron 57:1261‐1268.
   Hayakawa, Y. 2001. Toward an ideal synthesis of oligonucleotides: Development of a novel phosphoramidite method with high capability. Bull. Chem. Soc. Jap. 74:1547‐1565.
   Hayakawa, Y., Wakabayashi, S., Kato, H., and Noyori, R. 1990. The allylic protection method in solid‐phase oligonucleotide synthesis: An efficient preparation of solid‐anchored DNA oligomers. J. Am. Chem. Soc. 112:1691‐1696.
   Hayakawa, Y., Kawai, R., and Kataoka, M. 2001. Nucleotide synthesis via methods without nucleoside‐base protection. Eur. J. Pharm. Sci. 13:5‐16.
   Hébert, N., Davis, P.W., DeBaets, E.L., and Acevedo, O.L. 1994. Synthesis of N‐substituted hydroxyprolinol phosphoramidites for the preparation of combinatorial libraries. Tetrahedron Lett. 35:9509‐9512.
   Herbert, B.‐S., Gellert, G.C., Hochreiter, A., Pongracz, K., Wright, W.E., Zielinska, D., Chin, A.C., Harley, C.B., Shay, J.W., and Gryaznov, S.M. 2005. Lipid modification of GRN163, an N3′→P5′ thio‐phosphoramidate oligonucleotide, enhances the potency of telomerase inhibition. Oncogene 24:5262‐5268.
   Hinrichsen, R.D., Fraga, D., and Reed, M.W. 1992. 3′‐modified antisense oligodeoxyribonucleotides complementary to calmodulin mRNA alter behavioral responses in Paramecium. Proc. Natl. Acad. Sci. U.S.A. 89:8601‐8605.
   Hogendorf, W.F.J., Meeuwenoord, N., Overkleeft, H.S., Filippov, D.V., Laverde, D., Kropec, A., Huebner, J., Van der Marel, G.A., and Codee, J.D.C. 2011. Automated solid phase synthesis of teichoic acids. Chem. Commun. 47:8961‐8963.
   Horn, T. and Urdea, M.S. 1986. A chemical 5′‐phosphorylation of oligodeoxyribonucleotides that can be monitored by trityl cation release. Tetrahedron Lett. 27:4705‐4708.
   Hoshika, S., Ueno, Y., and Matsuda, A. 2003. Nucleosides and nucleotides. 218: Alternate‐strand triple‐helix formation by the 3′‐3′‐linked oligodeoxynucleotides using a purine motif. Bioconjug. Chem. 14:607‐613.
   Hoshika, S., Ueno, Y., Kamiya, H., and Matsuda, A. 2004. Nucleosides and nucleotides. Part 226: Alternate‐strand triple‐helix formation by 3′‐3′‐linked oligodeoxynucleotides composed of asymmetrical sequences. Bioorg. Med. Chem. Lett. 14:3333‐3336.
   Hovinen, J., Gouzaev, A.P., Azhayev, A.V., and Lönnberg, H. 1993a. A new method to prepare 3′‐modified oligonucleotides. Tetrahedron Lett. 34:5163‐5166.
   Hovinen, J., Guzaev, A., Azhayev, A., and Lönnberg, H. 1993b. Synthesis of 3′‐functionalized oligonucleotides on a single solid support. Tetrahedron Lett. 34:8169‐8172.
   Hovinen, J., Guzaev, A., Azhayev, A., and Lönnberg, H. 1994. Novel solid supports for the preparation of 3′‐derivatized oligonucleotides: Introduction of 3′‐alkylphosphate tether groups bearing amino, carboxy, carboxamido, and mercapto functionalities. Tetrahedron 50:7203‐7218.
   Hovinen, J., Guzaev, A., Azhayeva, E., Azhayev, A., and Lönnberg, H. 1995. Imidazole tethered oligodeoxyribonucleotides: Synthesis and RNA cleaving activity. J. Org. Chem. 60:2205‐2209.
   Ikeda, Y., Kubota, D., and Nagasaki, Y. 2010. Simple solid‐phase synthesis and biological properties of carbohydrate‐oligonucleotide conjugates modified at the 3′‐terminus. Bioconjug. Chem. 21:1685‐1690.
   Iyer, R.P. 1999. Oligonucleotide synthesis. In Comprehensive Natural Products Chemistry. Vol. 7. DNA and Aspects of Molecular Biology. (E. Kool, ed.) pp. 105‐152. Pergamon Press, Oxford.
   Jarvinen, P., Oivanen, M., and Lönnberg, H. 1991. Interconversion and phosphoester hydrolysis of 2′,5′‐ and 3′,5′‐dinucleoside monophosphates: Kinetics and mechanisms. J. Org. Chem. 56:5396‐5401.
   Jäschke, A., Fürste, J.P., Nordhoff, E., Hillenkamp, F., Cech, D., and Erdmann, V.A. 1993. Automated incorporation of polyethylene glycol into synthetic oligonucleotides. Tetrahedron Lett. 34:301‐304.
   Jäschke, A., Fürste, J.P., Nordhoff, E., Cech, D., and Erdmann, V.A. 1994. Synthesis and properties of oligodeoxyribonucleotide‐polyethylene glycol conjugates. Nucleic Acids Res. 22:4810‐4817.
   Jayaprakash, K.N., Peng, C.‐G., Butler, D., Varghese, J.P., Maier, M.A., Rajeev, K.G., and Manoharan, M. 2010. Non‐nucleoside building blocks for copper‐assisted and copper‐free click chemistry for the efficient synthesis of RNA conjugates. Org. Lett. 12:5410‐5413.
   Jensen, M.A., Anderson, K.M., and Davis, R.W. 2010. Gas‐phase cleavage and dephosphorylation of universal linker‐bound oligodeoxynucleotides. Nucleosides Nucleotides Nucleic Acids 29:867‐878.
   Johnsson, R., Lackey, J.G., Bogojeski, J.J., and Damha, M.J. 2011. New light labile linker for solid phase synthesis of 2′‐O‐acetal‐ester oligonucleotides and applications to siRNA prodrug development. Bioorg. Med. Chem. Lett. 21:3721‐3725.
   Kadokura, M., Wada, T., Seio, K., Moriguchi, T., Huber, J., Lührmann, R., and Sekine, M. 2001. Solid‐phase synthesis of a 5_‐terminal TMG‐capped trinucleotideblock of U1 snRNA. Tetrahedron Lett. 42:8853‐8856.
   Kahl, J.D. and Greenberg, M.M. 1999. Solution‐phase bioconjugate synthesis using protected oligonucleotides containing 3′‐alkyl carboxylic acids. J. Org. Chem. 64:507‐510.
   Kahl, J.D., McMinn, D.L., and Greenberg, M.M. 1998. High‐yielding method for on‐column derivatization of protected oligodeoxyribonucleotides and its application to the convergent synthesis of 5′,3′‐bis‐conjugates. J. Org. Chem. 63:4870‐4871.
   Kashida, H., Hayashi, T., Fujii, T., and Asanuma, H. 2011. A cationic dye triplet as a unique “Glue” that can connect fully matched termini of DNA duplexes. Chem. Eur. J. 17:2614‐2622.
   Kathawala, F. and Cramer, F. 1967. Synthesis of oligo‐ and poly‐nucleotides. XIII. 2′,3′‐(2,4‐dimethoxybenzylidene)uridine as a protective group for phosphate. Liebigs Ann. Chem. 709:185‐190.
   Kathawala, F. and Cramer, F. 1968. Synthesis of oligo and polynucleotides. XIV. Preparation of deoxyoligonucleotides with 2′,3′‐(2,4‐dimethoxybenzylidene)uridine as phosphate protective groups. Liebigs Ann. Chem. 712:195‐200.
   Kazanova, E.V., Zubin, E.V., Kachalova, A.V., Volkov, E.M., Oretskaya, T.S., Stetsenko, D.A., and Gottikh, M.B. 2007. A convenient solid‐phase method for the synthesis of novel oligonucleotide‐folate conjugates. Nucleosides, Nucleotides Nucleic Acids 26:1273‐1276.
   Khrapko, K.R., Lysov, Y.P., Khorlin, A.A., Ivanov, I.B., Ershov, G.M., Vasilenko, S.K., Florent'ev, V.L., and Mirzabekov, A.D. 1991. A method for DNA sequencing by hybridization with oligonucleotide matrix. DNA Sequence 1:375‐388.
   Koizumi, M., Koga, R., Hotoda, H., Momota, K., Ohmine, T., Furukawa, H., Agatsuma, T., Nishigaki, T., Abe, K., Kosaka, T., Tsutsumi, S., Sone, J., Kaneko, M., Kimura, S., and Shimada, K. 1997. Biologically active oligodeoxyribonucleotides‐IX. Synthesis and anti‐HIV‐1 activity of hexadeoxyribonucleotides, TGGGAG, bearing 3′‐ and 5′‐end‐modification. Bioorg. Med. Chem. 5:2235‐2243.
   Komiyama, M. and Yoshinari, K. 1997. Kinetic analysis of diamine‐catalyzed RNA hydrolysis. J. Org. Chem. 62:2155‐2160.
   Kopecky, K., Novakova, V., Miletin, M., and Zimcik, P. 2010. Solid‐phase synthesis of Aza‐phthalocyanine‐oligonucleotide conjugates and their evaluation as new dark quenchers of fluorescence. Bioconjug. Chem. 21:1872‐1879.
   Korshun, V.A., Balakin, K.V., Proskurina, T.S., Mikhalev, I.I., Malakhov, A.D., and Berlin, Y.A. 1999. Preparation of a pyrene seco‐pseudonucleoside for use in constructing interaction‐sensitive fluorescent DNA probes. Nucleosides Nucleotides 18:2661‐2676.
   Kosonen, M. and Lönnberg, H. 1995. General and specific acid/base catalysis of the hydrolysis and interconversion of ribonucleoside 2′‐ and 3′‐phosphotriesters: Kinetics and mechanisms of the reactions of 5′‐O‐pivaloyluridine 2′‐ and 3′‐dimethylphosphates. J. Chem. Soc. Perkin Trans. 2: Phys. Org. Chem. 1203‐1209.
   Krynetskaya, N.F., Zayakina, G.V., Oretskaya, T.S., Volkov, E.M., and Shabarova, Z.A. 1986. Oligodeoxyribonucleotide‐3′‐phosphate synthesis by selective cleavage of 3′‐terminal uridine. Nucleosides Nucleotides 5:33‐43.
   Kumar P. and Gupta, K.C. 1999. Rapid conditions for the cleavage of oligodeoxyribonucleotides from cis‐diol‐bearing universal polymer supports and their deprotection Nucleic Acids Res. 27:e2.
   Kumar, P. and Gupta, K.C. 2003. Rapid cleavage of oligodeoxyribonucleotides from cis‐diol‐bearing universal polymer support. Helv. Chim. Acta 86:59‐64.
   Kumar, P., Bose, N.K., and Gupta, K.C. 1991. A versatile solid phase method for the synthesis of oligonucleotide‐3′‐phosphates. Tetrahedron Lett. 32:967‐970.
   Kumar, P., Gupta, K.C., Rosch, R., and Seliger, H. 1997. Solid phase synthesis of oligonucleotides bearing phosphate and thiophosphate at their 3′‐termini. Chem. Lett. 26:1231‐1232.
   Kumar, P., Dhawan, G., Chandra, R., and Gupta, K.C. 2002. Polyamine‐assisted rapid and clean cleavage of oligonucleotides from cis‐diol bearing universal support. Nucleic Acids Res. 30:e130/1‐e130/8.
   Kumar, P., Mahajan, S., and Gupta, K.C. 2004. Universal reusable polymer support for oligonucleotide synthesis. J. Org. Chem. 69:6482‐6485.
   Kumar, R.K., Guzaev, A.P., Rentel, C., and Ravikumar, V.T. 2006. Efficient synthesis of antisense phosphorothioate oligonucleotides using a universal solid support. Tetrahedron 62:4528‐4534.
   Kumarev, V. 2001. Universal solid supports for solid phase synthesis of oligonucleotides. PCT Int. Appl. WO 2001096357 A2 20011220.
   Kurfürst, R., Roig, V., Chassignol, M., Asseline, U., and Nguyen, T.T. 1993. Oligo‐α‐deoxyribonucleotides with a modified nucleic base and covalently linked to reactive agents. Tetrahedron 49:6975‐6990.
   Kutyavin, I.V., Milesi, D., Belousov, Y., Podyminogin, M., Vorobiev, A., Gorn, V., Lukhtanov, E.A., Vermeulen, N.M.J., and Mahoney, W. 2006. A novel endonuclease IV post‐PCR genotyping system. Nucleic Acids Res. 34:e128/1‐e128/9.
   Kvach, M.V., Prokhorenko, I.A., Ustinov, A.V., Gontarev, S.V., Korshun, V.A., and Shmanai, V.V. 2007. Reagents for the selective immobilization of oligonucleotides on solid supports. Nucleosides Nucleotides Nucleic Acids 26:809‐813.
   Laing, B.M., Barrow‐Laing, L., Harrington, M., Long, E.C., and Bergstrom, D.E. 2010. Properties of double‐stranded oligonucleotides modified with lipophilic substituents. Bioconjug. Chem. 21:1537‐1544.
   Langenegger, S.M., Moesch, L., Natt, F., Hall, J., and Haener, R. 2003. A novel oxime‐derived solid support for the synthesis of 3‐ phosphorylated oligonucleotides. Helv. Chim. Acta 86:3476‐3481.
   Laurent, A. and Chaix, C. 2006. Parameters controlling the one‐step derivatization of controlled pore glass with a diol for solid‐phase synthesis of 3′‐modified oligonucleotides. Org. Proc. Res. Dev. 10:403‐408.
   Laurent, A., de Lambert, B., Charreyre, M.‐T., Mandrand, B., and Chaix, C. 2004. A one step derivatization of controlled pore glass for oligonucleotide solid‐phase synthesis. Tetrahedron Lett. 45:8883‐8887.
   Lemaitre, M., Bayard, B., and Lebleu, B. 1987. Specific antiviral activity of a poly(L‐lysine)‐conjugated oligodeoxyribonucleotide sequence complementary to vesicular stomatitis virus N protein mRNA initiation site. Proc. Natl. Acad. Sci. U.S.A. 84:648‐652.
   Leuck, M., Giare, R., Paul, M., Zien, N., and Wolter, A. 2004. A novel solid support for the synthesis of 3′‐amino‐alkylated oligonucleotides. Tetrahedron Lett. 45:317‐320.
   Li, X., Wang, Y., Guo, J., and Tang, X. 2011. Fluorescence detection of single‐nucleotide polymorphism with single‐strand triplex‐forming DNA probes. ChemBioChem 12:2863‐2870.
   Lietard, J., Meyer, A., Vasseur, J.J., and Morvan, F. 2008. New strategies for cyclization and bicyclization of oligonucleotides by click chemistry assisted by microwaves. J. Org. Chem., 73:191‐200.
   Lima, W.F., Prakash, T.P., Murray, H.M., Kinberger, G.A., Li, W., Chappell, A.E., Li, C.S., Murray, S.F., Gaus, H., Seth, P.P., Swayze, E.E., and Crooke, S.T. 2012. Single‐stranded siRNAs activate RNAi in animals. Cell 150:883‐894.
   Lin, K.‐Y. and Matteucci, M. 1991. Hybridization properties of deoxyoligonucleotides containing anthraquinone pseudonucleosides. Nucleic Acids Res. 19:3111‐3114.
   Lukhtanov, E.A., Kutyavin, I.V., Gamper, H.B., and Meyer, R.B. Jr. 1995. Oligodeoxynucleotides with conjugated dihydropyrroloindole oligopeptides: Preparation and hybridization properties. Bioconjug. Chem. 6:418‐426.
   Lyttle, M.H., Hudson, D., and Cook, R.M. 1996. A new universal linker for solid phase DNA synthesis. Nucleic Acids Res. 24:2793‐2798.
   Lyttle, M.H., Adams, H., Hudson, D., and Cook, R.M. 1997. Versatile linker chemistry for synthesis of 3′‐modified DNA. Bioconjug. Chem. 8:193‐198.
   Lyttle, M.H., Dick, D.J., Hudson, D., and Cook, R.M. 1999. A phosphate bound universal linker for DNA synthesis. Nucleosides Nucleotides 18:1809‐1824.
   Ma, Z. and Taylor, J.‐S. 2000. Nucleic acid‐triggered catalytic drug release. Proc. Natl. Acad. Sci. U.S.A. 97:11159‐11163.
   Ma, Z. and Taylor, J.‐S. 2001. Nucleic acid triggered catalytic drug and probe release: A new concept for the design of chemotherapeutic and diagnostic agents. Bioorg. Med. Chem. 9:2501‐2510.
   MacKellar, C., Graham, D., Will, D.W., Burgess, S., and Brown, T. 1992. Synthesis and physical properties of anti‐HIV antisense oligonucleotides bearing terminal lipophilic groups. Nucleic Acids Res. 20:3411‐3417.
   Maier, M.A., Yannopoulos, C.G., Mohamed, N., Roland, A., Fritz, H., Mohan, V., Just, G., and Manoharan, M. 2003. Synthesis of antisense oligonucleotides conjugated to a multivalent carbohydrate cluster for cellular targeting. Bioconjug. Chem. 14:18‐29.
   Malakhov, A.D., Korshun, V.A., and Berlin, Y.A. 2001. Synthesis and fluorescent characteristics of oligodeoxynucleotides containing a novel fluorescent label, p‐(2‐benzoxazolyl)tolane. Russian J. Bioorg. Chem. 27:413‐416.
   Malakhov, A.D., Skorobogatyi, M.V., Prokhorenko, I.A., Gontarev, S.V., Kozhich, D.T., Stetsenko, D.A., Stepanova, I.A., Shenkarev, Z.O., Berlin, Y.A., and Korshun, V.A. 2004. 1‐(Phenylethynyl)pyrene and 9,10‐bis(phenylethynyl)anthracene, useful fluorescent dyes for DNA labeling: Excimer formation and energy transfer. Eur. J. Org. Chem. 2004:1298‐1307.
   Markiewicz, W.T. and Wyrzykiewicz, T.K. 1989. Universal solid supports for the synthesis of oligonucleotides with terminal 3′‐phosphates. Nucleic Acids Res. 17:7149‐7158.
   Masuda, H., Watanabe, N., Naruoka, H., Nagata, S., Takagaki, K., Wada, T., and Yano, J. 2010. Synthesis, gene‐silencing activity and nuclease resistance of 3′‐3′‐linked double short hairpin RNA. Bioorg. Med. Chem. 18:8277‐8283.
   Matray, T.J., Yoo, D.J., McMinn, D.L., and Greenberg, M.M. 1997. Synthesis of oligonucleotides containing 3′‐alkylcarboxylic acids using a palladium labile oligonucleotide solid phase synthesis support. Bioconjug. Chem. 8:99‐102.
   Matsumoto, N., Toga, T., Hayashi, R., Sugasawa, K., Katayanagi, K., Ide, H., Kuraoka, I., and Iwai, S. 2010 Fluorescent probes for the analysis of DNA strand scission in base excision repair. Nucleic Acids Res. 38:e101/1‐e101/8.
   Matteucci, M.D. and Caruthers, M.H. 1981. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103:3185‐3191.
   Maxam, A.M. and Gilbert, W. 1977. A new method of sequencing DNA. Proc. Natl. Acad. Sci. U.S.A. 74:560‐564.
   McMinn, D.L. and Greenberg, M.M. 1996. Novel solid‐phase synthesis supports for the preparation of oligonucleotides containing 3′‐alkyl amines. Tetrahedron 52:3827‐3840.
   McMinn, D.L. and Greenberg, M.M. 1997. Synthesis of oligonucleotides containing 3′‐alkyl amines using N‐isobutyryl protected deoxyadenosine phosphoramidite. Tetrahedron Lett. 38:3123‐3126.
   McMinn, D.L. and Greenberg, M.M. 1998. Postsynthetic conjugation of protected oligonucleotides containing 3′‐alkylamines. J. Am. Chem. Soc. 120:3289‐3294.
   McMinn, D.L. and Greenberg, M.M. 1999. Convergent solution‐phase synthesis of a nucleopeptide using a protected oligonucleotide. Bioorg. Med. Chem. Lett. 9:547‐550.
   McMinn, D.L., Matray, T.J., and Greenberg, M.M. 1997. Efficient solution phase synthesis of oligonucleotide conjugates using protected biopolymers containing 3′‐terminal alkyl amines. J. Org. Chem. 62:7074‐7075.
   McMinn, D.L., Hirsch, R., and Greenberg, M.M. 1998 An orthogonal solid phase support for the synthesis of oligodeoxyribonucleotides containing 3′‐phosphates and its application in the preparation of photolabile hybridization probes. Tetrahedron Lett. 39:4155‐4158.
   Mercier, F., Paris, J., Kaisin, G., Thonon, D., Flagothier, J., Teller, N., Lemaire, C., and Luxen, A. 2011. General method for labeling siRNA by click chemistry with fluorine‐18 for the purpose of PET imaging. Bioconjug. Chem. 22:108‐114.
   Meyer, A., Spinelli, N., Dumy, P., Vasseur, J.‐J., Morvan, F., and Defrancq, E. 2010. Oligonucleotide sequential bis‐conjugation via click‐oxime and click‐huisgen procedures. J. Org. Chem. 75:3927‐3930.
   Millar, D.B. and Steiner, R.F. 1966. The effect of environment on the structure and helix‐coil transition of soluble ribonucleic acid. Biochemistry 5:2289‐2301.
   Misiura, K., Durrant, I., Evans, M.R., and Gait, M.J. 1990. Biotinyl and phosphotyrosinyl phosphoramidite derivatives useful in the incorporation of multiple reporter groups on synthetic oligonucleotides. Nucleic Acids Res. 18:4345‐4354.
   Monier, R., Stephenson, M.L., and Zamecnik, P.C. 1960. Preparation and some properties of a low‐molecular‐weight ribonucleic acid (RNA) from bakers' yeast. Biochim. Biophys. Acta 43:1‐8.
   Mullah, B. and Andrus, A. 1997. Automated synthesis of double dye‐labeled oligonucleotides using tetramethylrhodamine (TAMRA) solid supports. Tetrahedron Lett. 38:5751‐5754.
   Mullah, B., Livak, K., Andrus, A., and Kenney, P. 1998. Efficient synthesis of double dye‐labeled oligodeoxyribonucleotide probes and their application in a real time PCR assay. Nucleic Acids Res. 26:1026‐1031.
   Murata, A. and Wada, T. 2006. A novel linker for solid‐phase synthesis cleavable under neutral conditions. Tetrahedron Lett. 47:2147‐2150.
   Nadeau, J.G., Singleton, C.K., Kelly, G.B., Weith, H.L., and Gough, G.R. 1984. Use of ribonucleosides as protecting groups in synthesis of polynucleotides with phosphorylated terminals. Biochemistry 23:6153‐6159.
   Nakamura, Y., Akiyama, T., Bessho, K., and Yoneda, F. 1993. Convenient syntheses of oligonucleotides linked to 5‐deazaflavin coenzyme models at 3′‐end. Incorporation of 5‐deazaflavin to controlled pore glass (CPG) support. Chem. Pharm. Bull. 41:1315‐1317.
   Nakayama, S., Yan, L., and Sintim, H.O. 2008. Junction probes ‐ Sequence specific detection of nucleic acids via template enhanced hybridization processes. J. Am. Chem. Soc. 130:12560‐12561.
   Nelson, P.S., Frye, R.A., and Liu, E. 1989. Bifunctional oligonucleotide probes synthesized using a novel CPG support are able to detect single base pair mutations. Nucleic Acids Res. 17:7187‐7194.
   Nelson, P.S., Kent, M., and Muthini, S. 1992. Oligonucleotide labeling methods. 3. Direct labeling of oligonucleotides employing a novel, non‐nucleosidic, 2‐aminobutyl‐1,3‐propanediol backbone. Nucleic Acids Res. 20:6253‐6259.
   Nelson, P.S., Muthini, S., Kent, M.A., and Smith, T.H. 1997a. 3′‐Terminal modification of oligonucleotides using a universal solid support. Nucleosides Nucleotides 16:1951‐1959.
   Nelson, P.S., Muthini, S., Vierra, M., Acosta, L., and Smith, T.H. 1997b. RainbowTM universal CPG: A versatile solid support for oligodeoxyribonucleotide preparation. BioTechniques 22:752‐756.
   Niittymäki, T., Kaukinen, U., Virta, P., Mikkola, S., and Loennberg, H. 2004. Preparation of aza‐crown‐functionalized 2′‐O‐methyl oligoribonucleotides, potential artificial RNases. Bioconjug. Chem. 15:174‐184.
   Ohtsuka, E., Tanaka, T., and Ikehara, M. 1979. Studies on transfer ribonucleic acids and related compounds. XXXII. Synthesis of ribonucleotides corresponding to residues 1‐5 and 6‐10 of tRNAfMet from E. coli and their base conversion analogs. Nucleic Acids Res. 7:1283‐1296.
   Oivanen, M, Schnell, R., Pfleiderer, W., and Lönnberg, H. 1991. Interconversion and hydrolysis of monomethyl and monoisopropyl esters of adenosine 2′‐ and 3′‐monophosphates: Kinetics and mechanisms. J. Org. Chem. 56:3623‐3628.
   Oliviero, G., Borbone, N., Galeone, A., Varra, M., Piccialli, G., and Mayol, L. 2004. Synthesis and characterization of a bunchy oligonucleotide forming a monomolecular parallel quadruplex structure in solution. Tetrahedron Lett. 45:4869‐4872.
   Orson, F.M., Thomas, D.W., McShan, W.M., Kessler, D.J., and Hogan, M.E. 1991. Oligonucleotide inhibition of IL2Rα mRNA transcription by promoter region collinear triplex formation in lymphocytes. Nucleic Acids Res. 19:3435‐3441.
   Ossipov, D., Zamaratski, E., and Chattopadhyaya, J. 1999. Dipyrido[3,2‐a:2′,3′‐c]phenazine‐tethered oligo‐DNA: Synthesis and thermal stability of their DNA ⋅ DNA and DNA ⋅ RNA duplexes and DNA ⋅ DNA ⋅ DNA triplexes. Helv. Chim. Acta 82:2186‐2200.
   Ossipov, D., Pradeepkumar, P.I., Holmer, M., and Chattopadhyaya, J. 2001. Synthesis of [Ru(phen)2dppz]2+‐tethered oligo‐DNA and studies on the metallointercalation mode into the DNA duplex. J. Am. Chem. Soc. 123:3551‐3562.
   Ossipov, D., Gohil, S., and Chattopadhyaya, J. 2002. Synthesis of the DNA‐[Ru(tpy)(dppz)(CH3CN)]2+ conjugates and their photo cross‐linking studies with the complementary DNA strand. J. Am. Chem. Soc. 124:13416‐13433.
   Ota, N., Hirano, K., Warashina, M., Andrus, A., Mullah, B., Hatanaka, K., and Taira, K. 1998. Determination of interactions between structured nucleic acids by fluorescence resonance energy transfer (FRET): Selection of target sites for functional nucleic acids. Nucleic Acids Res. 26:735‐743.
   Paces, O., Tocik, Z., and Rosenberg, I. 2008 A new linker for solid‐phase synthesis of oligonucleotides with terminal phosphate group. Coll. Czechoslovak Chem. Comm. 73:32‐43.
   Pasternak, A., Kierzek, E., Pasternak, K., Fratczak, A., Turner, D.H., and Kierzek, R. 2008. The thermodynamics of 3′‐terminal pyrene and guanosine for the design of isoenergetic 2′‐O‐methyl‐RNA‐LNA chimeric oligonucleotide probes of RNA structure. Biochemistry 47:1249‐1258.
   Patnaik, S., Dash, S.K., Sethi, D., Kumar, A., Gupta, K.C., and Kumar, P. 2012. Engineered polymer‐supported synthesis of 3′‐carboxyalkyl‐modified oligonucleotides and their applications in the construction of biochips for diagnosis of the diseases. Bioconjug. Chem. 23:664‐670.
   Petrie, C.R., Reed, M.W., Adams, A.D., and Meyer, R.B. Jr. 1992. An improved CPG support for the synthesis of 3′‐amine‐tailed oligonucleotides. Bioconjug. Chem. 3:85‐87.
   Pevzner, P.A., Lysov, Y.P., Khrapko, K.R., Belyavskii, A.V., Florent'ev, V.L., and Mirzabekov, A.D. 1991. Improved chips for sequencing by hybridization. J. Biomol. Struct. Dyn. 9:399‐410.
   Pochet, S., Huynh‐Dinm, T., and Igolen, J. 1987. Synthesis of DNA fragments linked to a solid support. Tetrahedron 43:3481‐3490.
   Pon, R.T. 2000. Solid‐phase supports for oligonucleotide synthesis. Curr. Protoc. Nucl. Acid Chem. 3.1.1‐3.1.28.
   Pourceau, G., Meyer, A., Vasseur, J.‐J., and Morvan, F. 2008. Combinatorial and automated synthesis of phosphodiester galactosyl cluster on solid support by click chemistry assisted by microwaves. J. Org. Chem. 73:6014‐6017.
   Pourceau, G., Meyer, A., Vasseur, J.‐J., and Morvan, F. 2009. Azide solid support for 3′‐conjugation of oligonucleotides and their cyclization by click chemistry. J. Org. Chem. 74:6837‐6842.
   Prakash, T.P., Allerson, C.R., Dande, P., Vickers, T.A., Sioufi, N., Jarres, R., Baker, B.F., Swayze, E.E., Griffey, R.H., and Bhat, B. 2005. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48:4247‐4253.
   Prakash, T.P., Naik, N., Sioufi, N., Bhat, B., and Swayze, E.E. 2009. Activity of siRNAs with 2‐thio‐2′‐O‐methyluridine modification in mammalian cells. Nucleosides Nucleotides Nucleic Acids 28:902‐910.
   Prakash, T.P., Siwkowski, A., Allerson, C.R., Migawa, M.T., Lee, S., Gaus, H.J., Black, C., Seth, P.P., Swayze, E.E., and Bhat, B. 2010. Antisense oligonucleotides containing conformationally constrained 2′,4′‐(N‐methoxy)aminomethylene and 2′,4′‐aminooxymethylene and 2′‐O,4′‐C‐aminomethylene bridged nucleoside analogs show improved potency in animal models. J. Med. Chem. 53:1636‐1650.
   Putta, M.R., Yu, D., Bhagat, L., Wang, D., Zhu, F.‐G., and Kandimalla, E.R. 2010. Impact of nature and length of linker incorporated in agonists on toll‐like receptor 9‐mediated immune responses. J. Med. Chem. 53:3730‐3738.
   Putta, M.R., Yu, D., and Kandimalla, E.R. 2011. Synthesis, purification, and characterization of immune‐modulatory oligodeoxynucleotides that act as agonists of Toll‐like receptor 9. Methods Mol. Biol. 764:263‐277.
   Rait, A., Pirollo, K., Will, D.W., Peyman, A., Rait, V., Uhlmann, E., and Chang, E.H. 2000. 3′‐End conjugates of minimally phosphorothioate‐protected oligonucleotides with 1‐O‐hexadecylglycerol: Synthesis and anti‐ras activity in radiation‐resistant cells. Bioconjug. Chem. 11:153‐160.
   Ravikumar, V.T., Kumar, R.K., Olsen, P., Moore, M.N., Carty, R.L., Andrade, M., Gorman, D., Zhu, X., Cedillo, I., Wang, Z., Mendez, L., Scozzari, A.N. Aguirre, G., Somanathan, R., and Bernee's, S. 2008. UnyLinker: An efficient and scaleable synthesis of oligonucleotides utilizing a universal linker molecule: A novel approach to enhance the purity of drugs. Org. Proc. Res. Dev. 12:399‐410.
   Reed, M.W., Adams, A.D., Nelson, J.S., and Meyer, R.B. Jr. 1991. Acridine‐ and cholesterol‐derivatized solid supports for improved synthesis of 3′‐modified oligonucleotides. Bioconjug. Chem. 2:217‐225.
   Reed, M.W., Lukhtanov, E.A., Gorn, V.A., Lucas, D.A., Zhou, J.H., Pai, S.B., Cheng, Y.‐C., and Meyer, R.B. 1995. Structure‐activity relationship of cytotoxic cholesterol‐modified DNA duplexes. Nucleic Acids Res. 38:4587‐4596.
   Reines, S.A. and Cantor, C.R. 1974. New fluorescent hydrazide reagents for the oxidized 3′‐terminus of RNA. Nucleic Acids Res. 1:767‐786.
   Reddy, M.P., Hanna, N.B., and Farooqui, F. 1994. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35:4311‐4314.
   Roland, A., Xiao, Y., Jin, Y., and Iyer, R.P. 2001. A novel linker for the solid‐phase synthesis of a library of 3′‐thiophosphorylated dinucleotides. Tetrahedron Lett. 42:3669‐3672.
   Ross, A.J., Ivanova, I.A., Higson, A.P., and Nikolaev, A.V. 2000. Application of MPEG soluble polymer support in the synthesis of oligo‐phosphosaccharide fragments from the Leishmania lipophosphoglycan. Tetrahedron Lett. 41:2449‐2452.
   Rubina, A.Y., Pan'kov, S.V., Dementieva, E.I., Pen'kov, D.N., Butygin, A.V., Vasiliskov, V.A., Chudinov, A.V., Mikheikin, A.L., Mikhailovich, V.M., and Mirzabekov, A.D. 2004. Hydrogel drop microchips with immobilized DNA: Properties and methods for large‐scale production. Anal. Biochem. 325:92‐106.
   Ryazantsev, D.Y., Tsybulsky, D.A., Prokhorenko, I.A., Kvach, M.V., Martynenko, Y.V., Philipchenko, P.M., Shmanai, V.V., Korshun, V.A., and Zavriev, S.K. 2012. Two‐dye and one‐ or two‐quencher DNA probes for real‐time PCR assay: Synthesis and comparison with a TaqMan probe. Anal. Bioanal. Chem. 404:59‐68.
   Sabatino, D. and Damha, M.J. 2007. Oxepane nucleic acids: Synthesis, characterization, and properties of oligonucleotides bearing a seven‐membered carbohydrate ring. J. Am. Chem. Soc. 129:8259‐8270.
   Saison‐Behmoaras, T., Tocque, B., Rey, I., Chassignol, M., Thuong, N.T., and Helene, C. 1991. Short modified antisense oligonucleotides directed against Ha‐ras point mutation induce selective cleavage of the mRNA and inhibit T24 cells proliferation. EMBO J. 10:1111‐1118.
   Salo, H., Guzaev, A., and Lönnberg, H. 1998. Disulfide tethered solid supports for synthesis of photoluminescent oligonucleotide conjugates: Hydrolytic stability and labeling on the support. Bioconjug. Chem. 9:365‐371.
   Sanger, F., Nicklens, S., and Coulsen, A.R. 1977. DNA sequencing with chain‐terminating inhibitors. Proc. Natl. Acad. Sci. U.S.A. 74:5463‐5467.
   Sarin, P.S., Agrawal, S., Civeira, M.P., Goodchild, J., Ikeuchi, T., and Zamecnik, P.C. 1988. Inhibition of acquired immunodeficiency syndrome virus by oligodeoxynucleoside methylphosphonates. Proc. Nat. Acad. Sci. U.S.A. 85:7448‐7451.
   Scaringe, S.A. 2001. RNA oligonucleotide synthesis via 5′‐silyl‐2′‐orthoester chemistry. Methods 23:206‐217.
   Scheuer‐Larsen, C., Rosenbohm, C., Joergensen, T.J.D., and Wengel, J. 1997. Introduction of a universal solid support for oligonucleotide synthesis. Nucleosides Nucleotides 16:67‐80.
   Schoch, J., Wiessler, M., and Jäschke, A. 2010. Post‐synthetic modification of DNA by inverse‐electron‐demand Diels‐Alder reaction. J. Am. Chem. Soc. 132:8846‐8847.
   Schwartz, M.E., Breaker, R.R., Asteriadis, G.T., and Gough, G.R. 1995. A universal adapter for chemical synthesis of DNA or RNA on any single type of solid support. Tetrahedron Lett. 36:27‐30.
   Schwyzer, R., Felder, E., and Failli, P. 1984. 148. The CAMET and CASET links for the synthesis of protected oligopeptides and oligodeoxynucleotides on solid and soluble supports. Helv. Chim. Acta 67:1316‐1327.
   Scott, S., Hardy, P., Sheppard, R.C., and McLean, M.J. 1994. A universal support for oligonucleotide synthesis. In Innovation and Perspectives in Solid‐Phase Synthesis. Peptides, Proteins, and Nucleic Acids, Biological and Biomedical Applications (R. Epton, ed.) pp. 115‐124. Mayflower Worldwide, Ltd., Birmingham, U.K.
   Seio, K., Takaku, Y., Miyazaki, K., Kurohagi, S., Masaki, Y., Ohkubo, A., and Sekine, M. 2009. Synthesis of terminally modified oligonucleotides and their hybridization dependence on the size of the target RNAs. Org. Biomol. Chem. 7:2440‐2451.
   Seio, K., Kurohagi, S., Kodama, E., Masaki, Y., Tsunoda, H., Ohkubo, A., and Sekine, M. 2012 Short‐RNA selective binding of oligonucleotides modified using adenosine and guanosine derivatives that possess cyclohexyl phosphates as substituents. Org. Biomol. Chem. 10:994‐1006.
   Sethi, D., Patnaik, S., Kumar, A., Gandhi, R.P., Gupta, K.C., and Kumar, P. 2009. Polymer supported synthesis of aminooxyalkylated oligonucleotides, and some applications in the fabrication of microarrays. Bioorg. Med. Chem. 17:5442‐5450.
   Shaw, J.P., Kent, K., Bird, J., Fishback, J., and Froehler, B. 1991. Modified deoxyoligonucleotides stable to exonuclease degradation in serum. Nucleic Acids Res. 19:747‐750.
   Shchepinov, M.S. and Stetsenko, D.A. 1997. A facile route to 3′‐modified oligonucleotides. Bioorg. Med. Chem. Lett. 7:1181‐1184.
   Shchepinov, M.S., Udalova, I.A., Bridgman, A.J., and Southern, E.M. 1997. Oligonucleotide dendrimers: Synthesis and use as polylabelled DNA probes. . Nucleic Acids Res. 25:4447‐4454.
   Shchepinov, M.S., Mir, K.U., Elder, J.K., Frank‐Kamenetskii, M.D., and Southern, E.M. 1999. Oligonucleotide dendrimers: Synthesis and use as polylabelled DNA probes. Nucleic Acids Res. 27:3035‐3041.
   Singh, Y., Edupuganti, O.P., Villien, M., Defrancq, E., and Dumy, P. 2005. The oxime bond formation as a useful tool for the preparation of oligonucleotide conjugates. C.R. Chimie 8:789‐796.
   Skobridis, K., Hüsken, D., Nicklin, P., and Häner, R. 2005. Hybridization and cellular uptake properties of lipophilic oligonucleotide‐dendrimer conjugates. ARKIVOC 2005:459‐469.
   Skrzypczynski, Z. and Wayland, S. 2003. New reagents for the introduction of reactive functional groups into chemically synthesized DNA probes. Bioconjug. Chem. 14:642‐652.
   Skrzypczynski, Z. and Wayland, S. 2004 A modular approach to the synthesis of new reagents useful in the chemical synthesis of modified DNA probes: Derivatives of 3‐(tert‐butyldimethylsiloxy)glutaric anhydride as versatile building blocks in the synthesis of new phosphoramidites and modified solid supports. Bioconjug. Chem. 15:583‐593.
   Smith, T.H., Kent, M.A., Muthini, S., Boone, S.J., and Nelson, P.S. 1996. Oligonucleotide labeling methods. 4. Direct labeling reagents with a novel, non‐nucleosidic, chirally defined 2‐deoxy‐β‐D‐ribosyl backbone. Nucleosides Nucleotides 15:1581‐1594.
   Sonveaux, E. 1994. Protecting groups in oligonucleotide synthesis. In Methods in Molecular Biology, Vol. 26: Protocols for Oligonucleotide Conjugates: Synthesis and Analytical Techniques. (S. Agrawal, ed.) pp. 1‐71. Humana Press, Totowa, New Jersey.
   Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R.K., Racie, T., Rajeev, K. G., Röhl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., and Vornlocher, H.P. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNA. Nature 432:173‐178.
   Spinelli, N., Edupuganti, O.P., Defrancq, E., and Dumy, P. 2007. New solid support for the synthesis of 3′‐oligonucleotide conjugates through glyoxylic oxime bond formation. Org. Lett. 9:219‐222.
   Stein, C.A., Subasinghe, C., Shinozuka, K., and Cohen, J.S. 1988. Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res. 16:3209‐3221.
   Stephenson, M.L. and Zamecnik, P.C. 1978. Inhibition of Rous sarcoma viral RNA translation by a specific oligodeoxyribonucleotide. Proc. Natl. Acad. Sci. U.S.A. 75:285‐288.
   Stetsenko, D.A. and Gait, M.J. 2001. A convenient solid‐phase method for synthesis of 3′‐conjugates of oligonucleotides. Bioconjug. Chem. 12:576‐586.
   Su, S.‐H., Iyer, R.S., Aggarwal, S.K., and Kalra, K.L. 1997. Novel non‐nucleosidic phosphoramidites for oligonucleotide modification and labeling. Bioorg. Med. Chem. Lett. 7:1639‐1644.
   Suedkamp, B. and Meise, W. 1985. Aminolysis of phthalides. Arch. Pharm. 318:640‐648.
   Tanaka, T., Yamada, Y., Uesugi, S., and Ikehara, M. 1989. Preparation of a new phosphorylating agent: S‐(N‐monomethoxytritylaminoethyl)‐O‐(o‐chlorophenyl)phosphorothioate and its application in oligonucleotide synthesis. Tetrahedron 45:651‐660.
   Tedebark, U., Scozzari, A., Werbitzky, O., Capaldi, D., Holmberg, L. 2011. Industrial‐scale manufacturing of a possible oligonucleotide cargo CPP‐based drug. Methods Mol. Biol. 683:505‐524.
   Tennilä, T., Ketomäki, K., Penttinen, P., Tengvall, U., Azhayeva, E, Auriola, S., Lönnberg, H., and Azhayev, A. 2004. Selective circular oligonucleotide probes improve detection of point mutations in DNA. Chem. Biodivers. 1:609‐625.
   Thaden, J. and Miller, P.S. 1993. Automated synthesis of oligodeoxyribonucleoside methylphosphonates having [N‐(3‐aminoprop‐l‐y1‐)‐N‐(2‐hydroxyethyl‐)‐2‐aminoethyl] phosphate or methylphosphonic acid at the 3′ end using a modified controlled pore glass support. Bioconjug. Chem. 4:395‐401.
   Theisen, P., McCollum, C., Upadhya, K., Jacobson, K., Vu, H., Andrus, A. 1992. Fluorescent dye phosphoramidite labeling of oligonucleotides. Tetrahedron Lett. 33:5033‐5036.
   Tidd, D.M. and Warenius, H.M. 1989. Partial protection of oncogene, anti‐sense oligodeoxynucleotides against serum nuclease degradation using terminal methylphosphonate groups. Brit. J. Cancer 60:343‐350.
   Timofeev, E.N., Kochetkova, S.V., Mirzabekov, A.D., and Florentiev, V.L. 1996. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels. Nucleic Acids Res. 24:3142‐3148.
   Tosquellas, G., Alvarez, K., Dell'aquila, C., Morvan, F., Vasseur, J.‐J., Imbach, J.‐L., and Rayner, B. 1998a. The pro‐oligonucleotide approach: Solid phase synthesis and preliminary evaluation of model pro‐dodeca‐thymidylates. Nucleic Acids Res. 26:2069‐2074.
   Tosquellas, G., Bologna, J.C., Morvan, F., Rayner, B., and Imbach, J.‐L. 1998b. First synthesis of alternating sate‐phosphotriester/phosphodiester pro‐oligodeoxyribonucleotides on solid support. Bioorg. Med. Chem. Lett. 8:2913‐2918.
   Tyagi, S. and Kramer, F.R. 1996. Molecular beacons: Probes that fluoresce upon hybridization. Nat. Biotechnol. 14:303‐308.
   Ueno, Y., Mikawa, M., Hoshika, S., and Matsuda, A. 2001. Nucleosides and nucleotides. 208. Alternate‐strand triple‐helix formation by the 3′‐3′‐linked oligodeoxynucleotides with the anthraquinonyl group at the junction point. Bioconjug. Chem. 12:635‐642.
   Ueno, Y., Shibata, A., Matsuda, A., and Kitade, Y. 2003. Synthesis of 3′‐3′‐linked oligonucleotides branched by a pentaerythritol linker and the thermal stabilities of the triplexes with single‐stranded DNA or RNA. Bioconjug. Chem. 14:684‐689.
   Ueno, Y., Kawada, K., Naito, T., Shibata, A., Yoshikawa, K., Kim, H.‐S., Wataya, Y., and Kitade, Y. 2008. Synthesis and silencing properties of siRNA possessing lipophilic groups at their 3′‐termini. Bioorg. Med. Chem. 16:7698‐7704.
   Uhlmann, E., Hornung, L., Will, D.W., and Grafe, U. 1998. Synthesis of novel oligodeoxynucleotide conjugates containing the anionophoric moiety of pamamycin. Nucleosides Nucleotides 17:309‐316.
   Upadhya, K., Khattak, I.K., and Mullah, B. 2005. Oxidation of biotin during oligonucleotide synthesis. Nucleosides Nucleotides Nucleic Acids 24:919‐922.
   Urata, H. and Akagi, M. 1993. A convenient synthesis of oligonucleotides with a 3′‐phosphoglycolate and 3′‐phosphoglycaldehyde terminus. Tetrahedron Lett. 34:4015‐4018.
   Ustinov, A.V., Dubnyakova, V.V., and Korshun, V.A. 2008. A convenient ‘click chemistry’ approach to perylene diimide‐ oligonucleotide conjugates. Tetrahedron 64:1467‐1473.
   Van der Marel, G.A., Marugg, J.E., de Vroom, E., Wille, G., Tromp, M., Van Boeckel, C.A.A., and Van Boom, J.H. 1982. Phosphotriester synthesis of DNA fragments on cellulose and polystyrene solid supports. Rec. Trav. Chim. PaisBas 101:234‐241.
   Veeneman, G.H., Brugghe, H.F., van den Elst, H., and van Boom, J.H. 1990. Solid‐phase synthesis of a cell‐wall component of Haemophilus (Actinobacillus) pleuropneumoniae serotype 2. Carbohydrate Res. 195:C1‐C4.
   Villien, M., Defrancq, E., and Dumy, P. 2004. Chemoselective oxime and thiazolidine bond formation: A versatile and efficient route to the preparation of 3′‐peptide‐oligonucleotide conjugates. Nucleosides Nucleotides Nucleic Acids 23:1657‐1666.
   Vlattas, I., Dellureficio, J., Dunn, R., Sytwu, I.I., and Stanton, J. 1997. The use of thioesters in solid phase organic synthesis. Tetrahedron Lett. 38:7321‐7324.
   Vu, H., Singh, P., Lewis, L., Zendegui, J.G., and Jayaraman, K. 1993 Synthesis of cholesteryl supports and phosphoramidite for automated DNA synthesis of triple‐helix forming oligonucleotides (TFOs). Nucleosides Nucleotides 12:853‐864.
   Vu, H., Schmaltz Hill, T., and Jayaraman, K. 1994. Synthesis and properties of cholesteryl‐modified triple‐helix forming oligonucleotides containing a triglycyl linker. Bioconjug. Chem. 5:666‐668.
   Vu, H., Joyce, N., Rieger, M., Walker, D., Goldknopf, I., Hill, T.S., Jayaraman, K., and Mulvey, D. 1995 Use of phthaloyl protecting group for the automated synthesis of 3′‐[(hydroxypropyl)amino] and 3′‐[(hydroxypropyltriglycyl] oligonucleotide conjugates. Bioconjug. Chem. 6:599‐607.
   Walsh, A.J., Clark, G.C., and Fraser, W. 1997. A direct and efficient method for derivatization of solid supports for oligonucleotide synthesis. Tetrahedron Lett. 38:1651‐1654.
   Whitfeld, P.R. 1954. The determination of nucleotide sequence in polyribonucleotides. Biochem. J. 58:390‐396.
   Wilk, A., Chmielewski, M.K., Grajkowski, A., Phillips, L.R., and Beaucage, S.L. 2002. The 3‐(N‐tert‐butylcarboxamido)‐1‐propyl group as an attractive phosphate/thiophosphate protecting group for solid‐phase oligodeoxyribonucleotide synthesis. J. Org. Chem. 67:6430‐6438.
   Will, D.W. and Brown, T. 1992. Attachment of vitamin E derivatives to oligonucleotides during solid‐phase synthesis. Tetrahedron Lett. 33:2729‐2732.
   Wolfrum, C., Shi, S., Jayaraman, M., Wang, G., Pandey, R.K., Rajeev, K.G., Nakayama, T., Charisse, K., Ndungo, E.M., Zimmermann, T., Koteliansky, V., Manoharan, M., and Stoffel, M. 2007. Mechanisms and optimization of in vivo delivery of lipophilic siRNA. Nat. Biotechnol. 25:1149‐1157.
   Wu, F., Della‐Latta, P., Tyagi, S., and Kramer, F.R. 2011. Detection of pathogenic organisms with multicolor molecular beacons. In Molecular Microbiology: Diagnostic Principles and Practice (D.H. Persing, F.C. Tenover, J. Versalovic, Y.‐W. Tang, E.R. Ungar, D.A. Reiman, and T.J. White, eds.), pp. 285‐293. American Society of Microbiology, Washington, D.C.
   Yagodkin, A. and Azhayev, A. 2009. Universal linker phosphoramidite. ARKIVOC 2009:187‐197.
   Yagodkin, A., Weisel, J., and Azhayev, A. 2011. Versatile solid supports for oligonucleotide synthesis that incorporate urea bridge. Nucleosides Nucleotides Nucleic Acids 30:475‐489.
   Yoo, D.J. and Greenberg, M.M. 1995. Synthesis of oligonucleotides containing 3′‐alkyl carboxylic acids using universal, photolabile solid phase synthesis supports. J. Org. Chem. 60:3358‐3364.
   Zamecnik, P.C. 1996. History of antisense oligonucleotides. In Antisense Therapeutics (S. Agrawal, ed.) pp. 1‐11. Humana Press, Totowa, New Jersey.
   Zamecnik, P.C. and Stephenson, M.L. 1978. Inhibition of Rous sarcoma virus replication and cell transformation by a specific oligodeoxynucleotide. Proc. Natl. Acad. Sci. U.S.A. 75:280‐284.
   Zamecnik, P.C., Stephenson, M.L., and Scott, J.F. 1960. Partial purification of soluble ribonucleic acid (RNA). Proc. Natl. Acad. Sci. U.S.A. 46:811‐822.
   Zamecnik, P.C., Goodchild, J., Taguchi, Y., and Sarin, P.S. 1986. Inhibition of replication and expression of human T‐cell lymphotropic virus type III in cultured cells by exogenous synthetic oligonucleotides complementary to viral RNA. Proc. Natl. Acad. Sci. U.S.A. 83:4143‐4146.
   Zendegui, J.G., Vasquez, K.M., Tinsley, J.H., Kessler, D.J., and Hogen, M.E. 1992. In vivo stability and kinetics of absorption and disposition of 3′ phosphopropyl amine oligonucleotides. Nucleic Acids Res. 20:307‐314.
   Zhang, X.H. and Jones, R.A. 1996. A universal allyl linker for solid‐phase synthesis. Tetrahedron Lett. 37:3789‐3790.
   Zuckermann, R., Corey, D., and Schultz, P. 1987. Efficient methods for attachment of thiol specific probes to the 3′‐ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 15:5305‐5321.
Internet Resources‐5040.html
  Glen Research #1.
  Glen Research #2: Chemical phosphorylation reagent II. Technical Bulletin.‐Modifier%20S‐S‐1.pdf
  Glen Research. #3: Thiol‐modifier S‐S‐phospho‐ramidite and supports.
PDF or HTML at Wiley Online Library