Strategies for Oligoribonucleotide Synthesis According to the Phosphoramidite Method

Francine E. Wincott1

1 Ribozyme Pharmaceuticals, Inc., Boulder, Colorado
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 3.5
DOI:  10.1002/0471142700.nc0305s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Advances in oligoribonucleotide synthesis have lagged behind those in oligodeoxyribonucleotide synthesis because of the difficulty in identifying orthogonal protecting groups for the 2′‐ and 5′‐hydroxyls. Adaptation of the phosphoramidite method for DNA synthesis to RNA synthesis has greatly improved our understanding of RNA. It allows site‐specific introduction of modified nucleosides to any position in an RNA molecule, as well as introduction of variations at multiple sites in the molecule. This overview discusses issues that are relevant to RNA synthesis by the phosphoramidite approach, including supports used, activation of the ribonucleoside phosphoramidites, and protection of the nucleobase, phosphate, and 2′‐ and 5′‐hydroxyls.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Chemistry of Oligoribonucleotide Synthesis
  • Solid Supports
  • Activation of Ribonucleoside Phosphoramidites
  • Nucleobase‐Protecting Groups
  • Phosphate Protection
  • 2′‐Hydroxyl Protection
  • Alternative to 5′‐Trityl Derivatives for the 5′‐OH Protection of Ribonucleosides
  • Summary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Andrus, A., and Beaucage, S., and Ohms, J., and Wert, K. 1986. American Chemical Society Meeting, New York, Organic Division, Abstract 333.
   Beaucage, S.L. and Iyer, R.P. 1992. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron 48:2223‐2311.
   Beijer, B., and Sulston, I., and Sproat, B.S., and Rider, P., and Lamond, A.I., and Neuner, P. 1990. Synthesis and applications of oligoribonucleotides with selected 2′‐O‐methylation using the 2′‐O‐[1‐(2‐fluorophenyl)‐4‐methoxypiperidin‐4‐yl] protecting group. Nucl. Acids Res. 18:5143‐5151.
   Bellon, L. 2000. Oligoribonucleotides with 2′‐O‐(t‐butyldimethylsilyl) groups. In Current Protocols in Nucleic Acid Chemistry (S.L. Beaucage, D.E. Bergstrom, G.D. Glick and R.A. Jones, eds.) in press. John Wiley & Sons, New York
   Bergmann, F. and Pfleiderer, W. 1994a. Solid‐phase synthesis of oligoribonucleotides using the 2‐dansylethoxycarbonyl group for 5′‐hydroxy protection. Helvetica Chim. Acta 77:481‐500.
   Bergmann, F. and Pfleiderer, W. 1994b. The 2‐dansylethoxycarbonyl group for the protection of the 5′‐hydroxy function in oligoribonucleotide synthesis. Helvetica Chim. Acta 77:989‐998.
   Capaldi, D.C. and Reese, C.B. 1994. Use of the 1‐(2‐fluorophenyl)‐4‐methoxypiperidin‐4‐yl (Fpmp) and related protecting groups in oligoribonucleotide synthesis: Stability of internucleotide linkages to aqueous acid. Nucl. Acids Res. 22:2209‐2216.
   Cech, T. 1992. Ribozyme engineering. Curr. Opin. Struct. Biol. 2:605‐609.
   Chaix, C., and Duplaa, A.M., and Molko, D., and Tèoule, R. 1989. Solid phase synthesis of the 5′‐half of the initiator t‐RNA from B. subtilis. Nucl. Acids Res. 17:7381‐7393.
   Christodoulou, C., and Agrawal, S., and Gait, M.J. 1986. Incompatibility of acid‐labile 2′ and 5′ protecting groups for solid‐phase synthesis of oligoribonucleotides. Tetrahedron Lett. 27:1521‐1522.
   Cook, K.S., and Fisk, G.J., and Hauber, J., and Usman, N., and Daly, T.J., and Rusche, J.R. 1991. Characterization of HIV‐1 REV protein: Binding stoichiometry and minimal RNA substrate. Nucl. Acids Res. 19:1577‐1583.
   Dahl, B.J., and Bjergarde, K., and Henriksen, L., and Dahl, O. 1990. Deoxyribonucleoside phosphorodithioates. Preparation of dinucleoside phosphorodithioates from nucleoside thiophosphoramidites. Acta Chem. Scand. 44:639‐641.
   Damha, M.J., and Giannaris, P.A., and Zabarylo, S.V. 1990. An improved procedure for derivitization of controlled‐pore glass beads for solid‐phase oligonucleotide synthesis. Nucl. Acids Res. 18:3813‐3820.
   deBear, J.S., and Hayes, J.A., and Koleck, M.P., and Gough, G.R. 1987. A universal glass support for oligonucleotide synthesis. Nucleosides Nucleotides 6:821‐830.
   Francklyn, C. and Schimmel, P.R. 1989. Aminoacylation of RNA minihelixes with alanine. Nature 337:478‐481.
   Gait, M.J., and Pritchard, C., and Slim, G. 1991. Oligoribonucleotide synthesis. In Oligonucleotides and Analogues, A Practical Approach (F. Eckstein, ed.) pp 25‐48. Oxford University Press, Oxford.
   Gasparutto, D., and Livache, T., and Bazin, H., and Duplaa, A.‐M., and Guy, A., and Khorlin, A., and Molko, D., and Roget, A., and Téoule, R. 1992. Chemical synthesis of a biologically active natural tRNA with its minor bases. Nucl. Acids Res. 20:5159‐5166.
   Gold, L. 1988. Posttranscriptional regulatory mechanisms in Escherichia coli. Annu. Rev. Biochem. 57:199‐233.
   Gough, G.R., and Miller, T.J., and Mantick, N.A. 1996. p‐Nitrobenzyloxymethyl: A new fluoride‐removable protecting group for ribonucleoside 2′‐hydroxyls. Tetrahedron Lett. 37:981‐982.
   Hayakawa, Y., and Kataoka, M., and Noyori, R. 1996. Benzimidazolium triflate as an efficient promoter for nucleotide synthesis via the phosphoramidite approach. J. Org. Chem. 61:7996‐7997.
   Hayes, J.A., and Brunden, M.J., and Gilham, P.T., and Gough, G.R. 1985. High‐yield synthesis of oligoribonucleotides using o‐nitrobenzyl protection of 2′‐hydroxyls. Tetrahedron Lett. 26:2407‐2410.
   Himmelsbach, F., and Schulz, B.S., and Trichtinger, T., and Charubala, R., and Pfleiderer, W. 1984. The p‐nitrophenylethyl (Npe) group. Tetrahedron 40:59‐72.
   Hogrefe, R.I., and McCaffrey, A.P., and Borozdina, L.U., and McCampbell, E.S., and Vaghefi, M.M. 1994. Effect of excess water on the desilylation of oligoribonucleotides using tetrabutylammonium fluoride. Nucl. Acids Res. 21:4739‐4741.
   Iwai, S. and Ohtsuka, E. 1988. 5′‐Levulinyl and 2′‐tetrahydrofuranyl protection for the synthesis of oligoribonucleotides by the phosphoramidite approach. Nucl. Acids Res. 16:9443‐9456.
   Iwai, S., and Yamada, E., and Asaka, M., and Hayase, Y., and Inoue, H., and Ohtsuka, E. 1987. A new solid‐phase synthesis of oligoribonucleotides by the phosphoro‐p‐anisidate method using tetrahydrofuranyl protection of 2′‐hydroxyl groups. Nucl. Acids Res. 15:3761‐3772.
   Johnson, K.A. and Benkovic, S.J. 1990. Analysis of protein function by mutagenesis. In The Enzymes, Vol. 19 (Sigman, D.S., and Boyer, P.D., eds) pp. 159‐211. Academic Press, San Diego.
   Karaoglu, D. and Thurlow, D.L. 1991 A chemical interference study on the interaction of ribosomal protein L11 from in Escherichia coli with RNA molecules containing its binding site from 23S rRNA. Nucl. Acids Res. 19:5293‐5300.
   Klosel, R., and Konig, S., and Lehnhoff, S., and Karl, R.M. 1996. The 1,1‐dianisyl‐2,2,2‐trichloroethyl group as a 2′‐hydroxyl protection of ribonucleotides. Tetrahedron 52:1493‐1502.
   Lehmann, C., and Xu, Y.Z., Christodoulou, C., Tan, Z.K., and Gait, M.J. 1989. Solid‐phase synthesis of oligoribonucleotides using 9‐fluorenylmethoxycarbonyl (Fmoc) for 5′‐hydroxyl protection. Nucl. Acids Res. 17:2379‐2390.
   Leiber, E. and Enkoju, T. 1961. Synthesis and properties of 5‐(substituted) mercaptotetrazoles. J. Org. Chem. 26:4472‐4479.
   Lyttle, M.H., Wright, P.B., Sinha, N.D., Bain, J.D., and Chamberlin, A.R. 1991. New nucleoside phosphoramidites and coupling protocols for solid‐phase RNA synthesis. J. Org. Chem. 56:4608‐4615.
  McCollum, C. and Andrus, A. 1991. An optimized polystyrene support for rapid, efficient oligonucleotide synthesis. Tetrahedron Lett. 32:4069‐4072.
  Ogawa, T., Hosaka, H., Makita, T., and Takaku, H. 1991. Solid‐phase synthesis of oligoribonucleotides using 5′‐9‐fluorenylmethoxycarbonyl and 2′‐1‐(isopropoxyl)ethyl protection. Chem. Lett. 1169‐1172.
   Ohtsuka, E., Fujiyama, K., and Ikehara, M. 1981. Studies on transfer ribonucleic acids and related compounds. XL. Synthesis of an eicosaribonucleotide corresponding to residues 35‐54 of tRNAfMet from E. coli. Nucl. Acids Res. 9:3503‐3522.
   Pfister, M., Farkas, S., Charubala, R., and Pfleiderer, W. 1988. Recent progress in oligoribonucleotide synthesis. Nucleosides Nucleotides 7:595‐600.
   Pfleiderer, W., Matysiak, S., Bergmann, F., and Schnell, R. 1996. Recent progress in oligonucleotide synthesis. Acta Biochim. Polonica 43:37‐44.
   Pon, R.T., Usman, N., and Ogilvie, K.K. 1988. Derivitization of controlled pore glass beads for solid phase oligonucleotide synthesis. BioTechniques 6:768‐774.
   Rao, M.V., Reese, C.B., Schehlmann, V., and Yu, P.S. 1993. Use of the 1‐(2‐fluorophenyl)‐4‐methoxypiperidin‐4‐yl (Fpmp) protecting group in the solid‐phase synthesis of oligo‐ and poly‐ribonucleotides. J. Chem. Soc. Perkin Trans. I:43‐55.
   Rastogi, J. and Usher, D. 1995. A new 2′‐hydroxyl protecting group for the automated synthesis of oligoribonucleotides. Nucleic Acids Res. 23:4872‐4877 Nucleic Acids Res.
   Reddy, M.P., Hanna, N.B., and Farooqui, F. 1994. Fast cleavage and deprotection of oligonucleotides. Tetrahedron Lett. 35:4311‐4314.
   Reddy, M.P., Hanna, N.B., and Farooqui, F. 1995. Methylamine deprotection provides increased yield of oligoribonucleotides. Tetrahedron Lett. 36:8929‐8932.
   Reese, C.B. and Skone, P.A. 1985. Action of acid on oligoribonucleotide phosphotriester intermediates. Effect of released vicinal hydroxy functions. Nucl. Acids Res. 13:3501‐.
   Reese, C.B., Serafinowska, H.T., and Zappia, G. 1986. An acetal group suitable for the protection of 2′‐hydroxy functions in rapid oligoribonucleotide synthesis. Tetrahedron Lett. 27:2291‐2294.
   Sakatsume, O., Yamaguchi, T., Ishikawa, M., Hirao, I., Miura, K., and Takaku, H. 1991a. Solid phase synthesis of oligoribonucleotides by the phosphoramidite approach using 2′‐O‐1‐(2‐chloroethoxy)ethyl protection. Tetrahedron 47:8717‐8728.
   Sakatsume, O., Ogawa, T., Hosaka, H., Kawashima, M., Takaki, M., and Takaku, H. 1991b. Synthesis and properties of non‐hammerhead RNA using 1‐(2‐chloroethoxy)ethyl group for the protection of 2′‐hydroxyl function. Nucleosides Nucleotides 10:141‐153.
   Scaringe, S.A., Francklyn, C., and Usman, N. 1990. Chemical synthesis of biologically active oligoribonucleotides using β‐cyanoethyl protected ribonucleoside phosphoramidites. Nucl. Acids Res. 18:5433‐5341.
   Scaringe, S.A., Wincott, F.E., and Caruthers, M.H. 1998. Novel RNA synthesis method using 5′‐O‐silyl‐2′‐O‐orthoester protecting groups. J. Am. Chem Soc. 120:11820‐11821.
   Schwartz, M.E., Breaker, R.R., Asteriadis, G.T., deBear, J.S., and Gough, G.R. 1992. Rapid synthesis of oligoribonucleotides using 2′‐O‐(o‐nitrobenzyloxymethyl)‐protected monomers. Bioorg. Med. Chem. Lett. 2:1019‐1024.
  Sinha, N.D., Davis, P., Usman, N., Pèrez, J., Hodge, R., Kremsky, J., and Casale, R. 1993. Labile exocyclic amine protection in DNA, RNA and oligonucleotide analog synthesis facilitating N‐deacylation, minimizing depurination and chain degradation. Biochimie 75:13‐23.
  Sproat, B., Colonna, F., Mullah, B., Tsou, D., Andrus, A., Hampel, A., and Vinayak, R. 1995. An efficient method for the isolation and purification of oligoribonucleotides. Nucleosides Nucleotides 14:255‐273.
  Tanaka, T., Tamatsukuri, S., and Ikehara, M. 1986. Solid phase synthesis of oligoribonucleotides using o‐nitrobenzyl protection of 2′‐hydroxyl via a phosphite triester approach. Nucl. Acids Res. 14:6265‐6279.
  Theisen, P., McCollum, C., and Andrus, A. 1993. N‐6‐Dialkylformamidine‐2′‐deoxyadenosine phosphoramidites in oligodeoxynucleotide synthesis. Rapid deprotection of oligodeoxynucleotides. Nucleosides Nucleotides 12:1033‐1046.
  Usman, N., Pon, R.T., and Ogilvie, K.K. 1985. Preparation of ribonucleoside 3′‐O‐phosphoramidites and their application to the automated solid phase synthesis of oligonucleotides. Tetrahedron Lett. 26:4567‐4570.
  Usman, N., Ogilvie, K.K., Jiang, M.‐Y., and Cedergren, R.J. 1987. Automated chemical synthesis of long oligoribonucleotides using 2′‐O‐silylated ribonucleoside 3′‐O‐phosphoramidites on a controlled‐pore glass support: Synthesis of a 43‐nucleotide sequence similar to the 3′‐half molecule of an in Escherichia coli formylmethionine tRNA. J. Am. Chem. Soc. 109:7845‐7854.
  Vargeese, C., Carter, J., Yegge, J., Krivjansky, S., Settle, A., Kropp, E., Peterson, K., and Pieken, W. 1998. Efficient activation of nucleoside phosphoramidites with 4,5‐dicyanoimidazole during oligonucleotide synthesis. Nucl. Acids Res. 26:1046‐1050.
   Vinayak, R., Ratmeyer, L., Wright, P., Andrus, A., and Wilson, D. 1994. Chemical synthesis of biologically active RNA using labile protecting groups. In Innovations and Perspectives in Solid Phase Synthesis (R. Epton, ed.) pp 45‐50. Mayflower Worldwide, Birmingham.
   Westman, E. and Strömberg, R. 1994. Removal of t‐butyldimethylsilyl protection in RNA‐synthesis. Triethylamine trihydrofluoride (TEA, 3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF). Nucl. Acids Res. 22:2430‐2431.
   Wincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucl. Acids Res. 23:2677‐2684.
   Wu, T., Ogilvie, K.K., and Pon, R.T. 1988. N‐Phenoxyacetylated guanosine and adenosine phosphoramidites in the solid phase synthesis of oligoribonucleotides: Synthesis of a ribozyme sequence. Tetrahedron Lett. 34:4249‐4252.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library