Nucleoside Modification with Boron Clusters and Their Metal Complexes

Blazej A. Wojtczak1, Agnieszka B. Olejniczak1, Zbigniew J. Lesnikowski1

1 Institute for Medical Biology, Polish Academy of Sciences, Laboratory of Molecular Virology and Biological Chemistry, Lodz, Poland
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 4.37
DOI:  10.1002/0471142700.nc0437s38
Online Posting Date:  September, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

General methods for the synthesis of nucleosides modified with borane clusters and metallacarborane complexes are presented. These include: (1) the click chemistry approach based on Huisgen 1,3‐dipolar cycloaddition and (2) tethering of the metallacarborane group to the aglycone of a nucleoside via a dioxane ring opening in oxonium metallacarborane derivatives. The proposed methodologies broaden the availability of nucleoside‐borane cluster conjugates and open up new areas for their applications. Curr. Protoc. Nucleic Acid Chem. 38:4.37.1‐4.37.26. © 2009 by John Wiley & Sons, Inc.

Keywords: boron clusters; metal complexes; click chemistry; nucleosides; bioorganic‐inorganic materials

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of Nucleoside‐Boron Cluster Conjugates via Click Chemical Ligation Method
  • Basic Protocol 2: Preparation of Nucleoside‐Boron Cluster Conjugates via Cyclic Ether Ring Opening in Cyclic Ether Boron Cluster Oxonium Adducts
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of Nucleoside‐Boron Cluster Conjugates via Click Chemical Ligation Method

  Materials
  • 10‐Dioxane‐7,8‐dicarba‐nido‐undecaborane zwitterion ( S.11) (J. Plešek, pers. comm.)
  • Sodium azide, pure
  • Dimethylformamide, anhydrous, 99.5% pure
  • Methylene chloride (CH 2Cl 2), analytical grade
  • Methanol (CH 3OH), analytical grade
  • Silica gel 60 (230 to 400 mesh)
  • PdCl 2
  • 8‐Dioxane‐[3‐cobalt bis(1,2‐dicarbollide)] zwitterion ( S.13) or 8‐dioxane‐[3‐iron bis(1,2‐dicarbollide)] zwitterion ( S.14)
  • 60% sodium hydride (NaH) suspension in mineral oil
  • Propargyl alcohol, 99% pure
  • Toluene, anhydrous, 99.7% pure
  • Argon gas
  • 7,8‐Dicarba‐nido‐undecaborane anion ( S.18) (Hawthorne et al., )
  • 98% sulfuric acid
  • Dioxane, anhydrous
  • 99% dimethyl sulfate
  • 30% and 50% ethanol (EtOH), analytical grade
  • [3‐Iron bis(1,2‐dicarbollide)](‐1)ate anion ( S.20) (Hawthorne et al., ; Sivaev and Bregadze, )
  • Nitrogen gas
  • Benzene, analytical grade
  • Hexane, analytical grade
  • Pentynyl tosylate (Rong et al., )
  • Thymidine ( S.21)
  • Potassium carbonate, analytical grade
  • Diethylene glycol di(p‐toluenesulfonate) (Chen and Barker, )
  • tert‐Butanol, analytical grade
  • Water, deionized (Millipore)
  • 100 mM CuSO 4⋅5H 2O
  • 100 mM potassium ascorbate
  • TLC plates, 20 × 20–cm, pre‐coated with 0.2‐mm layer thickness silica gel 60 F254
  • Evaporator with vacuum (SpeedVac Plus SC110A Savant)
  • 1.5 × 20–cm and 2.5 × 20–cm sintered glass columns
  • Magnetic stir bar and plate
  • Separatory funnel
  • Filter paper (e.g., Whatman)
  • 80°C heating block
  • Reflux condenser
  • Sintered disc filter funnel (e.g., Schott G3)
  • 10‐mL syringes
  • Water aspirator
  • Vacuum pump
  • Lyophilizer

Basic Protocol 2: Preparation of Nucleoside‐Boron Cluster Conjugates via Cyclic Ether Ring Opening in Cyclic Ether Boron Cluster Oxonium Adducts

  Materials
  • 3′,5′‐protected 2′‐deoxyribonucleoside S.23, S.26, S.29, or S.32 (0.80 mmol)
  • 8‐dioxane‐[3‐cobalt bis(dicarbollide)] zwitterion ( S.13)
  • Phosphorus (V) oxide (P 2O 5), 98% pure
  • Anhydrous toluene
  • Argon gas
  • 60% sodium hydride (NaH) suspension in mineral oil
  • Silica gel
  • Methylene chloride (CH 2Cl 2), analytical grade
  • Acetonitrile (CH 3CN), anhydrous
  • 3′,5′‐protected 2′‐deoxyadenosine S.32
  • 8‐dioxane‐[3‐iron bis(dicarbollide)] zwitterion S.14
  • 2′‐Deoxyadenosine
  • 2′‐Deoxycytidine
  • 2′‐Deoxyguanosine
  • 2′‐Deoxythymidine
  • Tetrahydrofuran (THF), anhydrous
  • 1 M tetra‐n‐butylammonium fluoride (TBAF)
  • Ethyl acetate (EtOAc), analytical grade, absolute
  • Magnesium sulfate (Mg 2SO 4), anhydrous, pure
  • Flasks with stoppers
  • Vacuum oil pump
  • Magnetic stir bar and heating plate
  • Water aspirator with vacuum attached
  • 3.5 × 15–cm glass chromatography columns
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Barth, R.F., Coderre, J.A., Graça, M., Vicente, H., and Blue, T.E. 2005. Boron neutron capture therapy of cancer. Current status and future prospects. Clin. Cancer Res. 11:3987‐4002.
   Byun, Y., Yan, J., Al‐Madhoun, A.S., Johnsamuel, J., Yang, W., Barth, R.F., Eriksson, S., and Tjarks, W. 2005. Synthesis and biological evaluation of neutral and zwitterionic 3‐carboranyl thymidine analogues for boron neutron capture therapy. J. Med. Chem. 48:1188‐1198.
   Chen, Y. and Barker, G.L. 1999. Synthesis and properties of ABA amphiphiles. J. Org. Chem. 64:6870‐6873.
   Hawthorne, M.F. 1993. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew. Chem. Int. Ed. Engl. 32:950‐984.
   Hawthorne, M.F., Young, D.C., Andrews, T.D., Howe, D.V., Pilling, R.L., Pitts, A.D., Reinjes, M., Warren, L.F. Jr., and Wegner, P.A. 1968a. Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 90:879‐896.
   Hawthorne, M.F., Young, D.C., Garrett, P.M., Owen, D.A., Schwerin, S.G., Tebbe, F.N., and Wegner, P.A. 1968b. The preparation and characterization of the (3)‐1,2‐ and (3)‐1,7‐dicarbadodecahydroundecaborate(‐1) ions J. Am. Chem. Soc. 90:862‐868.
   Jelen, F., Olejniczak, A.B., Kourilova, A., Leśnikowski, Z.J., and Palecek, E. 2009. Electrochemical DNA detection based on polyhedral boron cluster label. Anal. Chem. 81:840‐844.
   Johnsamuel, J., Lakhi, N., Al‐Madhoun, A.S., Byun, Y., Yan, J., Eriksson, S., and Tjarks, W. 2004. Synthesis of ethyleneoxide modified 3‐carbonanyl thymine analogues and evaluation of their biochemical, physiochemical, and structural properties. Bioorg. Med. Chem. 12:4769‐4781.
   Leites, L.A. 1992. Vibrational spectroscopy of carboranes and parent boranes and its capabilities in carborane chemistry. Chem. Rev. 92:279‐323.
   Lesnikowski, Z.J. 2003. Boron clusters—A new entity for DNA‐oligonucleotide modification. Eur. J. Org. Chem. 4489‐4500.
   Lesnikowski, Z.J. 2007a. Boron units as pharmacophores—New applications and opportunities of boron cluster chemistry. Collect Czech. Chem. Commun. 72:1646‐1658.
   Lesnikowski, Z.J. 2007b. DNA as a platform for new biomaterials. Metal‐containing nucleic acids. Cur. Org. Chem. 11:355‐381.
   Lesnikowski, Z.J., Shi, J., and Schinazi, R.F. 1999. Nucleic acids and nucleosides containing carboranes, J. Organomet. Chem. 581:156‐169.
   Lesnikowski, Z.J., Paradowska, E., Olejniczak, A.B., Studzińska, M., Seekamp, P., Schüβler, U., Gabel, D., Schinazi, R.F., and Plešek, J. 2005. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes and their nucleoside conjugates. Bioorg. Med. Chem. 13:4168‐4175.
   Oglivie, K.K. 1973. The tert‐butyldimethylsilyl group as a protecting group in deoxynucleosides. Can. J. Chem. 51:3799‐3807.
   Olejniczak, A.B., Koziołkiewicz, M., and Leśnikowski, Z.J. 2002. Carboranyl oligonucleotides. 4. Synthesis, and physicochemical studies of oligonucleotides containing 2′‐O‐(o‐carboran‐1‐yl)methyl group. Antisense Nucleic Acid Drug Dev. 12:79‐94.
   Olejniczak, A.B., Plešek, J., Kriz, O., and Leśnikowski, Z.J. 2003. Nucleoside conjugate containing metallacarborane group and its incorporation into DNA‐oligonucleotide. Angew. Chem. Int. Ed. Engl. 42:5740‐5743.
   Olejniczak, A.B., Sut, A., Wróblewski, A.E., and Lesnikowski, Z.J. 2005. Infrared spectroscopy of nucleoside and DNA‐oligonucleotide conjugates labeled with carborane or metallacarborane group. Vib. Spectrosc. 39:177‐185.
   Olejniczak, A.B., Mucha, P., Grüner, B., and Lesnikowski, Z.J. 2007a. DNA‐dinucleotides bearing cobalt‐ and iron‐biscarborane complex. Organometallics 26:3272‐3274.
   Olejniczak, A.B., Plešek, J., and Lesnikowski, Z.J. 2007b. Nucleoside‐metallacarborane conjugates for base‐specific metal‐labeling of DNA. Chem. Eur. J. 13:311‐318.
   Olejniczak, A.B., Grüner, B., Sicha, V., Broniarek, S., and Lesnikowsk, Z.J. 2009. Metallacarboranes al labels for multipotential electrochemical coding of DNA. [3‐Chromium bis(dicarbollide)](‐1)ate and its nucleoside conjugates. Electroanalysis 21:501‐506.
   Plešek, J. 1992. Potential applications of the boron cluster compounds. Chem. Rev. 92:269‐278.
   Plešek, J., Hermanek, S., Franken, A., Cisarova, I., and Nachtigal, C. 1997. Dimethyl sulfate induced nucleophilic substitution of the [bis(1,2‐dicarbollido)‐3‐cobaltate(1−)] ion. Syntheses, properties and structures of its 8,8′‐m‐sulfato, 8‐phenyl, and 8‐dioxane derivatives. Collect. Czech. Chem. Commun. 62:47‐56.
   Plešek, J., Grüner, B., Macháček, J., Cìsařová, I., and čáslavský, J. 2007. 8‐Dioxane ferra(III) bis(dicarbollide): A paramagnetic functional molecule as versatile building block for introduction of a Fe(III) centre into organic molecules. J. Organomet. Chem. 692:4801‐4804.
   Rong, F.G., Soloway, A.H., Ikeda, S., and Ives, D.H. 1995. Synthesis of 5‐tethered carborane‐containing nucleosides as potential agents for DNA incorporation. Nucleosides Nucleotides 14:1873‐1887.
   Semioshkin, A.A., Sivaev, I.B., and Bregadze, V.I. 2008. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 8:977‐992.
   Semioshkin, A., Laskova1, J., Wojtczak, B., Andrysiak, A., Godovikov, I., Bregadze, V., and Lesnikowski, Z.J. 2009. Synthesis of closo‐dodecaborate based nucleoside conjugates. J. Organomet. Chem. 694:1375‐1379.
   Sivaev, I.B. and Bregadze, V.I. 2000. Chemistry of nickel and iron bis(dicarbollides). A review. J. Organomet. Chem. 614‐615:27‐36.
   Tjarks, W. 2000. The use of boron clusters in the rational design of boronated nucleosides for neutron capture therapy of cancer. J. Organomet. Chem. 614:37‐47.
   Tjarks, W., Anisuzzaman, A.K.M., Liu, L., Soloway, A.H., Barth, R.F., Perkins, D.J., and Adams, D.A. 1992. Synthesis and in vitro evaluation of boronated uridine and glucose derivatives for boron neutron capture therapy. J. Med. Chem. 35:1628‐1633.
   Valliant, J.F., Guenther, K.J., King, A.S., Morel, P., Schaffer, P., Sogbein, O.O., and Stephenson, K.A. 2002. The medicinal chemistry of carboranes. Coord. Chem. Rev. 232:173‐230.
   Wojtczak, B., Olejniczak, A.B., Przepiórkiewicz, M., Andrysiak, A., and Leśnikowski, Z.J. 2008a. Highly lipophilic adenosine phosphates bearing para‐carborane (C2B10H11) modification. Collect Czech. Chem. Commun. 73:175‐186.
   Wojtczak, B.W., Andrysiak, A., Grüner, B., and Lesnikowski, Z.J. 2008b. “Chemical Ligation”—A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 14:10675‐10682.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library