Synthesis of Geranyl‐2‐Thiouridine‐Modified RNA

Rui Wang1, Phensinee Haruehanroengra1, Jia Sheng1

1 Department of Chemistry and The RNA Institute, University at Albany, State University of New York, Albany, New York
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 4.72
DOI:  10.1002/cpnc.22
Online Posting Date:  March, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes the chemical synthesis of the S‐geranyl‐2‐thiouridine (ges2U) phosphoramidite and its incorporation into RNA oligonucleotides through solid‐phase synthesis. Starting from the 2‐thiouracil nucleobase and the protected ribose, the 2‐thiouridine is synthesized and the geranyl functionality is introduced into the 2‐thio position by using geranyl bromide as the geranylating reagent before the conversion of this modified nucleoside into a phosphoramidite building block. The modified phosphoramidite is used to make the geranyl‐RNA oligonucleotides with a solid‐phase DNA synthesizer. These RNA strands are then purified by ion‐exchange HPLC before further structural and functional studies, such as base pairing and enzyme recognition, can be done. © 2017 by John Wiley & Sons, Inc.

Keywords: nucleic acids; natural RNA modification; tRNA; geranylation

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of S‐Geranyl‐2‐Thiouridine Phosphoramidite
  • Basic Protocol 2: Synthesis, Purification, and Characterization of Geranyl‐Modified RNA Oligonucleotides
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of S‐Geranyl‐2‐Thiouridine Phosphoramidite

  Materials
  • 2‐Thiouracil (≥99%, Sigma‐Aldrich)
  • Argon
  • Hexamethyldisilazane (ReagentPlus hexamethyldisilazane, 99.9%, Sigma‐Aldrich)
  • Trimethylsilyl chloride (purified by redistillation, ≥99%, Sigma‐Aldrich)
  • 1‐O‐Acetyl‐2,3,5‐tri‐O‐benzoyl β‐D‐ribofuranose (99.5% pure, ChemGenes)
  • 1,2‐Dichloroethane (anhydrous, 99.8%, Sigma‐Aldrich)
  • NaCl (aqueous, saturated)
  • Tin(IV) chloride (99.995% trace metals basis, Sigma‐Aldrich)
  • Saturated aqueous sodium bicarbonate (NaHCO 3)
  • Methylene chloride (dichloromethane, CH 2Cl 2; purity >99.5%, Fluka)
  • Anhydrous magnesium sulfate (MgSO 4)
  • Methanol (anhydrous MeOH, Sigma‐Aldrich)
  • Sodium methoxide (99.995% trace metals basis, Sigma‐Aldrich)
  • DOWEX 50WX8‐400 ion‐exchange resin (H+ form) (Sigma‐Aldrich)
  • Ethyl acetate (EtOAc)
  • Ethanol (absolute)
  • N,N‐Dimethylformamide (DMF; anhydrous, 99% pure, Sigma‐Aldrich)
  • Di‐tert‐butylsilyl bis(trifluoromethanesulfonate) (97%, Sigma‐Aldrich)
  • Imidazole (ACS reagent, ≥99%, Sigma‐Aldrich)
  • tert‐Butyldimethylsilyl chloride (>97%, Sigma‐Aldrich)
  • HCl (aqueous, 1.0 M)
  • Anhydrous sodium sulfate (Na 2SO 4)
  • Silica gel (60‐Å porosity; 40‐ to 63‐μm particle size; 400 mesh)
  • HF‐pyridine (∼30% pyridine/∼70% hydrogen fluoride, Sigma‐Aldrich)
  • Pyridine (anhydrous, purity >99%, Sigma‐Aldrich)
  • 4,4′‐Dimethoxytrityl chloride (95%, Sigma‐Aldrich)
  • Triethylamine (>99%, Sigma‐Aldrich)
  • N,N‐Diisopropylethylamine (DIPEA; 99% pure, Sigma‐Aldrich)
  • Geranyl bromide (95%, Sigma‐Aldrich)
  • 2‐Cyanoethyl N,N‐diisopropylchlorophosphoramidite (ChemGenes Corporation)
  • 250‐mL three‐neck, round‐bottom flasks, oven‐dried
  • Magnetic stir bars
  • Reflux apparatus
  • 250‐mL one‐neck, round‐bottom flasks, oven‐dried
  • Rotary evaporator
  • Vacuum oil pump
  • 1‐, 5‐, and 10‐mL syringes
  • 1000‐mL beakers
  • Filter paper
  • pH paper
  • Lyophilizer
  • 10‐, 25‐, 50‐, and 100‐mL round‐bottom flasks
  • Thermometer
  • Hot plate
  • Separatory funnels
  • Rubber septum
  • 22 × 457–mm silica gel chromatography columns
  • Additional reagents and equipment for performing thin‐layer chromatography (TLC) and column chromatography

Basic Protocol 2: Synthesis, Purification, and Characterization of Geranyl‐Modified RNA Oligonucleotides

  Materials
  • Geranylated 2‐thiouridine phosphoramidite (ges2U phosphoramidite; protocol 1)
  • Anhydrous dichloromethane
  • Acetonitrile (CH 3CN), anhydrous, HPLC‐grade
  • Unmodified RNA phosphoramidites: rA‐CE, rG‐CE, Ac‐rC‐CE, rU‐CE (ChemGenes)
  • Methylamine solution (40% wt. in H 2O)
  • Ammonium hydroxide solution (28.0% to 30.0% NH 3 basis)
  • Ammonium acetate (>99%, Sigma‐Aldrich)
  • 2.0 M triethylammonium acetate (TEAA) buffer, pH 7.0
  • RNA synthesizer and columns (e.g., Oligo‐800 DNA synthesizer or equivalent)
  • Vacuum pump
  • 2‐mL screw‐cap tubes or vials
  • Hotplate
  • 13‐mm syringe filter with 0.2‐μm nylon membrane (Life Sciences)
  • Ion exchange‐HPLC columns (Dionex, cat. no. PA‐100 or PA‐200)
  • HPLC system with detector at 260 nm
  • Lyophilizer
  • Sep‐Pac C18 columns (Waters)
  • Microcentrifuge tubes
  • 2‐mL autoclaved vials
  • UV spectrophotometer (Nanodrop‐1000)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Bartos, P., Maciaszek, A., Rosinska, A., Sochacka, E., and Nawrot, B. 2014. Transformation of a wobble 2‐thiouridine to 2‐selenouridine via S‐geranyl‐2‐thiouridine as a possible cellular pathway. Bioorg. Chem. 56:49‐53. doi: 10.1016/j.bioorg.2014.05.012.
  Bilbille, Y., Gustilo, E.M., Harris, K.A., Jones, C.N., Lusic, H., Kaiser, R.J., Delaney, M.O., Spremulli, L.L., Deiters, A., and Agris, P.F. 2011. The human mitochondrial tRNAMet: Structure/function relationship of a unique modification in the decoding of unconventional codons. J. Mol. Biol. 406:257‐274. doi: 10.1016/j.jmb.2010.11.042.
  Cantara, W.A., Crain, P.F., Rozenski, J., McCloskey, J.A., Harris, K.A., Zhang, X., Vendeix, F.A., Fabris, D., and Agris, P.F. 2011. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res. 39:D195‐201. doi: 10.1093/nar/gkq1028.
  Chen, P., Crain, P.F., Nasvall, S.J., Pomerantz, S.C., and Bjork, G.R. 2005. A “gain of function” mutation in a protein mediates production of novel modified nucleosides. EMBO J. 24:1842‐1851. doi: 10.1038/sj.emboj.7600666.
  Dumelin, C.E., Chen, Y., Leconte, A.M., Chen, Y.G., and Liu, D.R. 2012. Discovery and biological characterization of geranylated RNA in bacteria. Nat. Chem. Biol. 8:913‐919. doi: 10.1038/nchembio.1070.
  Graham, W.D., Barley‐Maloney, L., Stark, C.J., Kaur, A., Stolarchuk, C., Sproat, B., Leszczynska, G., Malkiewicz, A., Safwat, N., Mucha, P., Guenther, R., and Agris, P.F. 2011. Functional recognition of the modified human tRNALys3(UUU) anticodon domain by HIV's nucleocapsid protein and a peptide mimic. J. Mol. Biol. 410:698‐715. doi: 10.1016/j.jmb.2011.04.025.
  Hopper, A.K. 2013. Transfer RNA post‐transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae. Genetics 194:43‐67. doi: 10.1534/genetics.112.147470.
  Hopper, A.K. and Shaheen, H.H. 2008. A decade of surprises for tRNA nuclear‐cytoplasmic dynamics. Trends Cell Biol. 18:98‐104. doi: 10.1016/j.tcb.2008.01.001.
  Iben, J.R. and Maraia, R.J. 2012. tRNAomics: tRNA gene copy number variation and codon use provide bioinformatic evidence of a new anticodon: Codon wobble pair in a eukaryote. RNA 18:1358‐1372. doi: 10.1261/rna.032151.111.
  Jager, G., Chen, P., and Bjork, G.R. 2016. Transfer RNA bound to MnmH protein is enriched with geranylated tRNA—A possible intermediate in its selenation? PloS one 11:e0153488. doi: 10.1371/journal.pone.0153488.
  Joyce, G.F. 2002. The antiquity of RNA‐based evolution. Nature 418:214‐221. doi: 10.1038/418214a.
  Laxman, S., Sutter, B.M., Wu, X., Kumar, S., Guo, X., Trudgian, D.C., Mirzaei, H., and Tu, B.P. 2013. Sulfur amino acids regulate translational capacity and metabolic homeostasis through modulation of tRNA thiolation. Cell 154:416‐429. doi: 10.1016/j.cell.2013.06.043.
  Liu, N., Dai, Q., Zheng, G., He, C., Parisien, M., and Pan, T. 2015. N(6)‐methyladenosine‐dependent RNA structural switches regulate RNA‐protein interactions. Nature 518:560‐564. doi: 10.1038/nature14234.
  Machnicka, M.A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., Januszewski, W., Kalinowski, S., Dunin‐Horkawicz, S., Rother, K.M., Helm, M., Bujnicki, J.M., and Grosjean, H. 2013. MODOMICS: A database of RNA modification pathways—2013 update. Nucleic Acids Res. 41:D262‐267. doi: 10.1093/nar/gks1007.
  Matteucci, M.D. and Caruthers, M.H. 1981. Synthesis of deoxyoligonucleotides on a polymer support. J. Am. Chem. Soc. 103:3185‐3191. doi: 10.1021/ja00401a041.
  Phizicky, E.M. and Hopper, A.K. 2010. tRNA biology charges to the front. Genes Dev. 24:1832‐1860. doi: 10.1101/gad.1956510.
  Sample, P.J., Koreny, L., Paris, Z., Gaston, K.W., Rubio, M.A., Fleming, I.M., Hinger, S., Horakova, E., Limbach, P.A., Lukes, J., and Alfonzo, J.D. 2015. A common tRNA modification at an unusual location: The discovery of wyosine biosynthesis in mitochondria. Nucleic Acids Res. 43:4262‐4273. doi: 10.1093/nar/gkv286.
  Sanders, C.L., Lohr, K.J., Gambill, H.L., Curran, R.B., and Curran, J.F. 2008. Anticodon loop mutations perturb reading frame maintenance by the E site tRNA. RNA 14:1874‐1881. doi: 10.1261/rna.1170008.
  Scott, A.I. 1997. How were porphyrins and lipids synthesized in the RNA world? Tetrahedron Lett. 38:4961‐4964. doi: 10.1016/S0040‐4039(97)01143‐X.
  Shepherd, J. and Ibba, M. 2013. Direction of aminoacylated transfer RNAs into antibiotic synthesis and peptidoglycan‐mediated antibiotic resistance. FEBS Lett. 587:2895‐2904. doi: 10.1016/j.febslet.2013.07.036.
  Sheppard, K., Akochy, P.M., and Soll, D. 2008. Assays for transfer RNA‐dependent amino acid biosynthesis. Methods 44:139‐145. doi: 10.1016/j.ymeth.2007.06.010.
  Veres, Z. and Stadtman, T.C. 1994. A purified selenophosphate‐dependent enzyme from Salmonella typhimurium catalyzes the replacement of sulfur in 2‐thiouridine residues in tRNAs with selenium. Proc. Natl. Acad. Sci. U.S.A. 91:8092‐8096. doi: 10.1073/pnas.91.17.8092.
  Wang, R., Ranganathan, S.V., Valsangkar, V.A., Magliocco, S.M., Shen, F., Chen, A., and Sheng, J. 2015. Water‐bridged hydrogen bond formation between 5‐hydroxylmethylcytosine (5‐hmC) and its 3'‐neighbouring bases in A‐ and B‐form DNA duplexes. Chem. Commun. 51:16389‐16392. doi: 10.1039/C5CC06563A.
  Wang, R., Vangaveti, S., Ranganathan, S.V., Basanta‐Sanchez, M., Haruehanroengra, P., Chen, A., and Sheng, J. 2016. Synthesis, base pairing and structure studies of geranylated RNA. Nucleic Acids Res. 44:6036‐6045. doi: 10.1093/nar/gkw544.
  Wolfe, M.D., Ahmed, F., Lacourciere, G.M., Lauhon, C.T., Stadtman, T.C., and Larson, T.J. 2004. Functional diversity of the rhodanese homology domain: The Escherichia coli ybbB gene encodes a selenophosphate‐dependent tRNA 2‐selenouridine synthase. J. Biol. Chem. 279:1801‐1809. doi: 10.1074/jbc.M310442200.
  Zhou, X.‐L., Ruan, Z.‐R., Wang, M., Fang, Z.‐P., Wang, Y., Chen, Y., Liu, R.‐J., Eriani, G., and Wang, E.‐D. 2014. A minimalist mitochondrial threonyl‐tRNA synthetase exhibits tRNA‐isoacceptor specificity during proofreading. Nucleic Acids Res. 42:13873‐13876. doi: 10.1093/nar/gku1218.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library