Methods to Crystallize RNA

Adrian R. Ferré‐D'Amaré1, Jennifer A. Doudna2

1 Fred Hutchinson Cancer Research Center, Seattle, Washington, 2 Yale University, New Haven, Connecticut
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 7.6
DOI:  10.1002/0471142700.nc0706s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Preparation of suitably large and well‐ordered single crystals is usually the rate‐limiting step in the determination of the three‐dimensional structure of RNAs and their complexes with proteins by X‐ray crystallography. This unit discusses a variety of experimental considerations for obtaining crystals of RNAs and RNA‐protein complexes. Topics include design of crystallizable constructs, screening, and optimization of crystallization conditions.

PDF or HTML at Wiley Online Library

Table of Contents

  • Overview
  • Construct Design
  • Sample Preparation and Analysis
  • Crystallization Trials
  • Optimization of Crystallization Conditions
  • Conclusion
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Aggarwal, A.K. 1990. Crystallization of DNA binding proteins with oligodeoxynucleotides. Methods 1:83‐90.
   Anderson, A.C., Earp, B.E., and Frederick, C.A. 1996. Sequence variation as a strategy for crystallizing RNA motifs. J. Mol. Biol. 259:696‐703.
   Baeyens, K.J., De Bondt, H.L., and Holbrook, S.R. 1995. Structure of an RNA double helix including uracil‐uracil base pairs in an internal loop. Nature Struct. Biol. 2:56‐62.
   Basavappa, R. and Sigler, P.B. 1991. The 3 Å crystal structure of yeast initiator tRNA: Functional implications in initiator/elongator discrimination. EMBO J. 10:3105‐3111.
   Berger, I., Kang, C., Sinha, N., Wolters, M., and Rich, A. 1996. A highly efficient 24‐condition matrix for the crystallization of nucleic acid fragments. Acta Crystallogr. Sect. D Biol. Crystallogr. 52:465‐468.
   Berman, H.M., Gelbin, A., and Westbrook, J. 1996. Nucleic acid crystallography: A view from the nucleic acid database. Prog. Biophys. Mol. Biol. 66:255‐288.
   Blundell, T.L. and Johnson, L.N. 1976. Protein Crystallography. Academic Press, London.
   Burns, G. and Glazer, A.M. 1990. Space groups for solid state scientists. Academic Press, Boston.
   Carter, C.W. 1997. Response surface methods for optimizing and improving reproducibility of crystal growth. Methods Enzymol. 276:74‐99.
   Carter, C.W., Jr. and Carter, C.W. 1979. Protein crystallization using incomplete factorial experiments. J. Biol. Chem. 254:12219‐12223.
   Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., and Doudna, J.A. 1996. Crystal structure of a group I ribozyme domain: Principles of RNA packing. Science 273:1678‐1685.
   Chayen, N.E. 1997. The role of oil in macromolecular crystallization. Structure 5:1269‐1274.
   Chayen, N., Stewart, P.D.S., and Blow, D.M. 1992. Microbatch crystallization under oil—a new technique allowing many small‐volume crystallization trials. J. Cryst. Growth. 122:176‐80.
   Cohen, S.L. 1996. Domain elucidation by mass spectrometry. Structure 4:1013‐1016.
   Correll, C.C., Freeborn, B., Moore, P.B., and Steitz, T.A. 1997. Metals, motifs, and recognition in the crystal structure of a 5S rRNA domain. Cell 91:705‐712.
   Correll, C.C., Munishkin, A., Chan, Y.‐L., Ren, Z., Wool, I.G., and Steitz, T.A. 1998. Crystal structure of the ribosomal RNA domain essential for binding elongation factors. Proc. Natl. Acad. Sci. U.S.A. 95:13436‐13441.
   Cudney, B., Patel, S., Weisgraber, K., Newhouse, Y., and McPherson, A. 1994. Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr. Sect. D Biol. Crystallogr. 50:414‐423.
   D'Arcy, A. 1994. Crystallizing proteins—a rational approach? Acta Crystallogr. Sect. D Biol. Crystallogr. 50:469‐471.
   Dickerson, R.E., Goodsell, D.S., and Neidle, S. 1994. “… the tyranny of the lattice …”. Proc. Natl. Acad. Sci. U.S.A. 91:3579‐3583.
   Doublié, S. 1997. Preparation of selenomethionyl proteins for phase determination. Methods Enzymol. 276:523‐530.
   Doudna, J.A. and Cech, T.R. 1995. Self‐assembly of a group I intron active site from its component tertiary structural domains. RNA 1:36‐45.
   Doudna, J., Grosshans, C., Gooding, A., and Kundrot, C.E. 1993. Crystallization of ribozymes and small RNA motifs by a sparse matrix approach. Proc. Natl. Acad. Sci. U.S.A. 90:7829‐7833.
   Drenth, J. 1994. Principles of Protein X‐ray Crystallography. Springer‐Verlag, New York.
   Dubochet, J., Adrian, M., Chang, J.‐J., Homo, J.‐C., Lepault, J., McDowall, A.W., and Schultz, P. 1988. Cryo‐electron microscopy of vitrefied specimens. Q. Rev. Biophys. 21:129‐228.
   Ducruix, A. and Geigé, R. (eds.). 1992. Crystallization of Nucleic Acids and Proteins: A Practical Approach. Oxford University Press, Oxford.
   Ferré‐D'Amaré, A.R. and Burley, S.K. 1997. Dynamic light scattering in evaluating crystallizability of macromolecules. Methods Enzymol. 276:157‐166.
   Ferré‐D'Amaré, A.R. and Doudna, J.A. 1996. Use of cis‐ and trans‐ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucl. Acids Res. 24:977‐978.
   Ferré‐D'Amaré, A.R. and Doudna, J.A. 1997. Establishing suitability of RNA preparations for crystallization. Determination of polydispersity. In Ribozyme Protocols (P.C. Turner, ed.) pp. 371‐378. Humana Press, Totowa, N.J.
   Ferré‐D'Amaré, A.R. and Doudna, J.A. 1999. RNA folds: Insights from recent crystal structures. Annu. Rev. Biophys. Biomol. Struct. 28:57‐73.
   Ferré‐D'Amaré, A.R. and Doudna, J.A. 2000. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA‐binding protein U1A as a crystallization module. J. Mol. Biol. 295:541‐556.
   Ferré‐D'Amaré, A.R., Zhou, K., and Doudna, J.A. 1998a. Crystal structure of a hepatitis delta virus ribozyme. Nature. 395:567‐574.
   Ferré‐D'Amaré, A.R., Zhou, K., and Doudna, J.A. 1998b. A general module for RNA crystallization. J. Mol. Biol. 279:621‐631.
   Golden, B.L., Podell, E.R., Gooding, A.R., and Cech, T.R. 1997. Crystals by design: A strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron. J. Mol. Biol. 270:711‐723.
   Golden, B.L., Gooding, A.R., Podell, E.R., and Cech, T.R. 1998. A preorganized active site in the crystal structure of the Tetrahymena ribozyme. Science 282:259‐264.
   Harp, J.M., Timm, D.E., and Bunick, G.J. 1998. Macromolecular crystal annealing: Overcoming increased mosaicity associated with cryocrystallography. Acta Cryatallogr. Sect. D Biol. Crystallogr. 54:622‐628.
   Holbrook, S.R. and Kim, S.‐H. 1985. Crystallization and heavy‐atom derivatives of polynucleotides. Methods Enzymol. 114:167‐176.
   Holbrook, S.R. and Kim, S.‐H. 1997. RNA crystallography. Biopolymers 44:3‐21.
   Holbrook, S.R., Cheong, C., Tinoco, I.J., and Kim, S.‐H. 1991. Crystal structure of an RNA double helix incorporating a track of non‐Watson‐Crick base pairs. Nature 353:579‐581.
   Ippolito, J.A. and Steitz, T.A. 1998. A 1.3 Å resolution crystal structure of the HIV‐1 trans‐activation response region RNA stem reveals a metal ion‐dependent bulge conformation. Proc. Natl. Acad. Sci U.S.A. 95:9819‐9824.
   Jancarik, J. and Kim, S.‐H. 1991. Sparse matrix sampling: A screening method for crystallization of proteins. J. Appl. Crystallogr. 24:409‐411.
   Kim, J.L. 1992. X‐ray crystallographic studies of a ribonuclease resistant fragment of E. coli 5S RNA. Ph.D. Dissertation, Yale University, New Haven, Conn.
   Kim, S.‐H., Quigley, G., Suddath, F.L., Rich, A. 1971. High‐resolution X‐ray diffraction patterns of crystalline transfer RNA that show helical regions. Proc. Natl. Acad. Sci. U.S.A. 68:841‐845.
   Kim, S.‐H., Suddath, F.L., Quigley, G.J., McPherson, A., Sussman, J.L., Wang, A.H.J., Seeman, N.C., and Rich, A. 1974. Three‐dimensional tertiary structure of yeast phenylalanine transfer RNA. Science 185:435‐440.
   Ladner, J.E., Finch, J.T., Klug, A., and Clark, B.F.C. 1972. High‐resolution X‐ray diffraction studies on a pure species of transfer RNA. J. Mol. Biol. 72:99‐101.
   Lapham, J. and Crothers, D.M. 1996. RNase H cleavage for processing of in vitro transcribed RNA for NMR studies and RNA ligation. RNA 2:289‐296.
   Matthews, B.W. 1968. Solvent content of protein crystals. J. Mol. Biol. 33:491‐497.
   Matthews, B.W. 1985. Determination of protein molecular weight, hydration and packing from crystal densities. Methods Enzymol. 114:176‐187.
   McPherson, A. 1990. Current approaches to macromolecular crystallization. Eur. J. Biochem. 189:1‐23.
   McPherson, A. 1999. Crystallization of Biological Macromolecules. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
   Oubridge, C., Ito, N., Evans, P.R., Teo, C.‐H., and Nagai, K. 1994. Crystal structure at 1.92 Å resolution of the RNA‐binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature 372:432‐438.
   Oubridge, C., Ito, N., Teo, C.‐H., Fearnley, I., and Nagai, K. 1995. Crystallization of RNA‐protein complexes II. The application of protein engineering for crystallization of the U1A protein‐RNA complex. J. Mol. Biol. 249:409‐423.
   Perbandt, M., Nolte, A., Lorenz, S., Bald, R., Betzel, C., and Erdmann, V.A. 1998. Crystal structure of domain E of Thermus flavus 5S RNA: A helical RNA structure including a hairpin loop. FEBS Lett. 429:211‐215.
   Petsko, G.A. 1985. Preparation of isomorphous heavy atom derivatives. Methods Enzymol. 114:147‐156.
   Pley, H.W., Lindes, D.S., DeLuca‐Flaherty, C., and McKay, D.B. 1993. Crystals of a hammerhead ribozyme. J. Biol. Chem. 268:19656‐19658.
   Pley, H.W., Flaherty, K.M., and McKay, D.B. 1994a. Model for an RNA tertiary interaction from the structure of an intermolecular complex between a GAAA tetraloop and an RNA helix. Nature 372:111‐113.
   Pley, H.W., Flaherty, K.M., and McKay, D.B. 1994b. Three‐dimensional structure of a hammerhead ribozyme. Nature 372:68‐74.
   Price, S.R., Ito, N., Oubridge, C., Avis, J.M., and Nagai, K. 1995. Crystallization of RNA‐protein complexes I. Methods for the large‐scale preparation of RNA suitable for crystallographic studies. J. Mol. Biol. 249:398‐408.
   Price, S.R., Evans, P.R., and Nagai, K. 1998. Crystal structure of the spliceosomal U2B″U2A′ protein complex bound to a fragment of U2 small nuclear RNA. Nature 394:645‐650.
   Puttaraju, M. and Been, M.D. 1992. Group I permuted intron‐exon (PIE) sequences self‐splice to produce circular exons. Nucl. Acids Res. 20:5357‐5364.
   Richardson, J.S. and Richardson, D.C. 1985. Interpretation of electron density maps. Methods Enzymol. 115:189‐206.
   Robertus, J.D., Ladner, J.E., Finch, J.T., Rhodes, D., Brown, R.S., Clark, B.F.C., and Klug, A. 1974. Structure of yeast phenylalanine tRNA at 3Å resolution. Nature. 250:546‐551.
   Rodgers, D.W. 1997. Practical cryocrystallography. Methods Enzymol. 276:183‐203.
   Rould, M.A., Perona, J.J., and Steitz, T.A. 1991. Structural basis of anticodon loop recognition by glutaminyl‐tRNA synthetase. Nature. 352:213‐218.
   Ruff, M., Mitschler, A., Cavarelli, J., Giegé, R., Mikol, V., Thierry, J.C., Lorber, B., and Moras, D. 1988. A high resolution diffracting crystal form of the complex between yeast tRNAAsp and aspartyl‐tRNA synthetase. J. Mol. Biol. 201:235‐236.
   Saenger, W. 1984. Principles of Nucleic Acid Structure. Springer‐Verlag, New York.
   Schevitz, R.W., Podjarny, A.D., Krishnamachari, N., Hughes, J.J., Sigler, P.B., and Sussman, J.L. 1979. Crystal structure of a eukaryotic initiator tRNA. Nature 278:188‐190.
   Schindelin, H., Zhang, M., Bald, R., Fürste, J.‐P., Erdmann, V.A., and Heinemann, U. 1995. Crystal structure of an RNA dodecamer containing the Escherichia coli Shine‐Delgarno sequence. J. Mol. Biol. 249:595‐603.
   Schultz, S.C., Shields, G.C., and Steitz, T.A. 1990. Crystallization of Escherichia coli catabolite gene activator protein with its DNA binding site the use of modular DNA. J. Mol. Biol. 213:159‐166.
   Scott, W.G., Finch, J.T., Grenfell, R., Fogg, J., Smith, T., Gait, M.J., and Klug, A. 1995a. Rapid crystallization of chemically synthesized hammerhead RNA's using a double screening procedure. J. Mol. Biol. 250:327‐332.
   Scott, W.G., Finch, J.T., and Klug, A. 1995b. The crystal structure of an all‐RNA hammerhead ribozyme: A proposed mechanism for RNA catalytic cleavage. Cell 81:991‐1002.
   Shah, S.A. and Brunger, A.T. 1999. The 1.8 Å crystal structure of a statically disordered 17 base‐pair RNA duplex: principles of RNA crystal packing and its effect on nucleic acid structure. J. Mol. Biol. 285:1577‐88.
   Smith, J.L. and Thompson, A. 1998. Reactivity of selenomethionine‐‐dents in the magic bullet? Structure 6:815‐819.
   Stura, E.A. and Wilson, I.A. 1990. Analytical and production seeding techniques. Methods 1:38‐49.
   Su, L., Chen, L., Egli, M., Berger, J.M., and Rich, A. 1999. Minor groove RNA triplex in the crystal structure of a viral pseudoknot involved in ribosomal frameshifting. Nature Struct. Biol. 6:285‐292.
   Swanson, S.M. 1988. Effective resolution of macromolecular X‐ray diffraction data. Acta Crystallogr. A44:437‐442.
   Weber, P.C. 1997. Overview of protein crystallization methods. Methods Enzymol. 276:13‐22.
   Wukovitz, S.W. and Yeates, T.O. 1995. Why protein crystals favor some space‐groups over others. Nature Struct. Biol. 2:1062‐1067.
   Yeates, T.O. 1997. Detecting and overcoming crystal twinning. Methods Enzymol. 276:344‐358.
PDF or HTML at Wiley Online Library