Biophysical Analysis of Triple‐Helix Formation

Alexandre S. Boutorine1, Christophe Escudé1

1 Muséum National d'Histoire Naturelle, Paris
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 7.12
DOI:  10.1002/0471142700.nc0712s29
Online Posting Date:  June, 2007
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Two methods for DNA triple‐helix analysis are described in this unit: a gel‐shift assay based on the slower electrophoretic migration of a triplex in a polyacrylamide gel under nondenaturing conditions, and an optical method in which the thermal denaturation of the triple helix is followed by UV spectrophotometry. Both methods give valuable information on the characteristics of DNA triple‐helix formation and triplex stability under different conditions.

Keywords: DNA triple helix; nondenaturing gel electrophoresis; gel‐shift assay; thermal denaturation; UV spectrophotometry; melting point

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Nondenaturing Gel‐Shift Studies of Triple‐Helix Formation
  • Basic Protocol 2: Thermal Denaturation Studies of Triple‐Helix Formation
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Nondenaturing Gel‐Shift Studies of Triple‐Helix Formation

  Materials
  • 50 to 100 µM fluorescently or radioactively labeled duplex (target DNA) in H 2O (two separate strands or a single hairpin oligonucleotide)
  • 50 to 100 µM triplex‐forming oligonucleotide (TFO) in H 2O
  • 10× MES buffer (see recipe) or HEPES buffer (see recipe)
  • 30% (w/v) sucrose with 0.025% (w/v) bromphenol blue and 0.025% (w/v) xylene cyanol FF
  • 40% acrylamide/N,N′‐methylene‐bis‐acrylamide (19:1)
  • N,N,NN′‐Tetramethylethylenediamine (TEMED)
  • 10% (w/v) ammonium persulfate
  • 0.5‐ to 1.5‐mL polypropylene microcentrifuge tubes (e.g., Eppendorf)
  • 90°C water bath or dry heating block
  • 50‐ to 100‐mL side‐arm flask and rubber or silicone stopper
  • Sintered‐glass funnel filter, no. 3 or 4
  • Vertical electrophoresis system with glass plates (e.g., 16.5 × 14–cm plates with 0.3‐ to 0.6‐mm spacers and 12‐ to 16‐well comb with 0.5‐ to 0.8‐cm‐long teeth)
  • High‐voltage electrophoresis power supply with power regulation
  • Whatmann 3MM chromatographic paper
  • Gel dryer
  • Fluorescence gel scanner or radioactive phosphor imager (e.g., Phosphor Imager or Typhoon instrument from GE Healthcare)
  • Storage phosphor screens and cassettes for exposure to radioactive gels ()
  • Scanning image analysis software (e.g., ImageQuant v. 5, Molecular Dynamics)
  • Additional reagents and equipment for gel electrophoresis ( appendix 3B)
CAUTION: Radioactive labeling of oligonucleotides must be done in specially equipped laboratories that have permission to work with isotopes such as 32P or 33P.CAUTION: Acrylamide is toxic and must be handled using gloves and appropriate eye protection.

Basic Protocol 2: Thermal Denaturation Studies of Triple‐Helix Formation

  Materials
  • 10× cacodylate buffer (see recipe)
  • 130 µM target DNA in H 2O (oligonucleotide duplex in the form of two complementary strands in equimolar concentrations)
  • 130 µM triplex‐forming oligonucleotide (TFO) in H 2O
  • Mineral oil
  • 0.5‐ to 1.5‐mL polypropylene microcentrifuge tubes (e.g., Eppendorf)
  • UV‐Vis spectrophotometer with thermostatted cells (e.g., UVIKON XL), linked to a computer with data‐acquisition software
  • Programmed thermostat (e.g., ThermoElectron, Lauda, Haake, Heto, Neslab)
  • Vacuum desiccator
  • Quartz spectrophotometer cells with black side walls and hermetic Teflon caps (e.g., Hellma QS114B quartz cells)
  • Graphing software: e.g., Microsoft Excel or KalaidaGraph (Synergy Software; http://www.synergy.com/)
CAUTION: Cacodylic acid and its salts are highly toxic. Observe all precautions for handling and disposal of this material, including the use of gloves and appropriate eye protection.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Arimondo, P.B., Boutorine, A.S., Baldeyrou, B., Bailly, C., Kuwahara, M., Hecht, S.M., Sun, J.S., Garestier, T., and Hélène, C. 2002. Design and optimization of camptothecin conjugates of triple helix–forming oligonucleotides for sequence‐specific DNA cleavage by topoisomerase. J. Biol. Chem. 277:3132‐3140.
   Boutorine, A.S. and Sun, J.S. 2005. Postsynthetic functionalization of triple helix–forming oligonucleotides. In Oligonucleotide Synthesis: Methods and Applications (P. Herdewijn, ed.) pp. 251‐260. Humana Press, Totowa, N. J.
   Brunet, E., Corgnali, M., Cannata, F., Perrouault, L., and Giovannangeli, C. 2006. Targeting chromosomal sites with locked nucleic acid‐modified triplex‐forming oligonucleotides: Study of efficiency dependence on DNA nuclear environment. Nucl. Acids Res. 34:4546‐4553.
   Escudé, C., François, J.C., Sun, J.S., Ott, G., Sprinzl, M., Garestier, T., and Hélène, C. 1993. Stability of triple helices containing RNA and DNA strands: Experimental and molecular modeling studies. Nucl. Acids Res. 21:5547‐5553.
   Escudé, C., Nguyen, C.H., Mergny, J.L., Sun, J.S., Bisagni, E., Garestier, T., and Hélène, C. 1995. Selective stabilization of DNA triple helices by benzopyridoindole derivatives. J. Am. Chem. Soc. 117:10212‐10219.
   Escudé, C., Giovannangeli, C., Sun, J.S., Lloyd, D.H., Chen, J.K., Gryaznov, S.M., Garetier, T., and Hélène, C. 1996. Stable triple‐helices formed by N3′→P5′ oligophosphoramidates inhibit in vitro transcription elongation. Proc. Natl. Acad. Sci. U.S.A. 93:4365‐4369.
   Faria, M., Wood, C.D., Perrouault, L., Nelson, J.S., Winter, A., White, M.R.H., Hélène, C., and Giovannangeli, C. 2000. Targeted inhibition of transcription elongation in cells mediated by triplex‐forming oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 97:3862‐3867.
   Felsenfeld, G. and Rich, A. 1957. Studies on the formation of two‐ and three‐stranded polyribonucleotides. Biochim. Biophys. Acta 26:457‐468.
   Fox, K.R. 2000. Targeting DNA with triplexes. Curr. Med. Chem. 7:17‐37.
   Giovannangeli, C., Perrouault, L., Escudé, C., Thuong, N.T., and Hélène, C. 1996. Specific inhibition of in vitro transcription elongation by triplex‐forming oligonucleotide‐intercalator conjugates targeted to HIV proviral DNA. Biochemistry 35:10539‐10548.
   Giovannangeli, C., Diviacco, S., Labrousse, V., Gryaznov, S., Charneau, P., and Hélène, C. 1997. Accessibility of nuclear DNA to triplex‐forming oligonucleotides: The integrated HIV‐1 provirus as a target. Proc. Natl. Acad. Sci. U.S.A. 94:79‐84.
   Grimm, G.N., Boutorine, A.S., and Hélène, C. 2000. Rapid routes of synthesis of oligonucleotide conjugates from non‐protected oligonucleotides and ligands possessing different nucleophilic or electrophilic functional groups. Nucleosides Nucleotides Nucleic Acids 19:1943‐1965.
   Grimm, G.N., Boutorine, A.S., Lincoln, P., Nordén, B., and Hélène, C. 2002. Formation of DNA triple helices by an oligonucleotide conjugated to a fluorescent ruthenium complex. Chembiochem. 3:324‐331.
   Gryaznov, S.M. and Banait, N.S. 2002. DNA and RNA analogues: Oligonucleotide phosphoramidates with bridging nitrogen. Expert Opin. Ther. Patents 12:543‐559.
   Guntaka, R.V., Varma, B.R., and Weber, K.T. 2003. Triplex‐forming oligonucleotides as modulators of gene expression. Int. J. Biochem. Cell Biol. 35:22‐31.
   Jepsen, J.S., Sorensen, M.D., and Wengel, J. 2004. Locked nucleic acid: A potent nucleic acid analog in therapeutics and biotechnology. Oligonucleotides 14:130‐146.
   Lacroix, L. and Mergny, J.L. 2000. Chemical modification of pyrimidine TFOs: Effect on i‐motif and triple helix formation. Arch. Biochem. Biophys. 381:153‐163.
   Le Doan, T., Perrouault, L., Praseuth, D., Habhoub, N., Décout, J.L., Thuong, N.T., Lhomme, J., and Hélène, C. 1987. Sequence‐specific recognition, photocrosslinking and cleavage of the DNA double helix by an oligo‐[α]‐thymidilate covalently linked to an azidoproflavine derivative. Nucl. Acids Res. 15:7749‐7760.
   Mergny, J.L. and Lacroix, L. 2003. Analysis of thermal melting curves. Oligonucleotides 13:515‐537.
   Morvan, F., Chaix, C., Zeissler, A., Rayner, B., and Imbach, J.L. 1995. Triple helix forming α‐oligonucleotides containing 5‐methylcytosine and/or 5‐bromouracil. Nucleosides Nucleotides 14:975‐977.
   Moser, H.E. and Dervan, P.B. 1987. Sequence‐specific cleavage of double helical DNA by triple helix formation. Science 238:645‐650.
   Noonberg, S.B., Francois, J.C., Garestier, T., and Helene, C. 1995. Effect of competing self‐structure on triplex formation with purine‐rich oligodeoxynucleotides containing GA repeats. Nucl. Acids Res. 23:1956‐1963.
   Novopashina, D.S., Sinyakov, A.N., Ryabinin, V.A., Venyaminova, A.G., Halby, L., Sun, J.S., and Boutorine, A.S. 2005. Sequence‐specific conjugates of oligo(2′‐O‐methylribonucleotides) and hairpin oligocarboxamide minor‐groove binders: Design, synthesis, and binding studies with double‐stranded DNA. Chem. Biodivers. 2:936‐952.
   Olivas, W.M. and Maher, L.J. III. 1995. Competitive triplex/quadruplex equilibria involving guanine‐rich oligonucleotides. Biochemistry 34:278‐284.
   Praseuth, D., Guieysse, A.L., and Hélène, C. 1999. Triple helix formation and the antigene strategy for sequence‐specific control of gene expression. Biochim. Biophys. Acta 1489:181‐206.
   Rogers, F.A., Lloyd, J.A., and Glazer, P.M. 2005. Triplex‐forming oligonucleotides as potential tools for modulation of gene expression. Curr. Med. Chem. 5:319‐326.
   Rougée, M., Faucon, B., Mergny, J.L., Barcelo, F., Giovannangeli, C., Garestier, T., and Hélène, C. 1992. Kinetics and thermodynamics of triple‐helix formation: Effects of ionic strength and mismatches. Biochemistry 31:9269‐9278.
   Rusling, D.A., Powers, V.E., Ranasinghe, R.T., Wang, Y., Osborne, S.D., Brown, T., and Fox, K.R. 2005. Four base recognition by triplex‐forming oligonucleotides at physiological pH. Nucl. Acids Res. 33:3025‐3032.
   Sollogoub, M., Darby, R.A.J., Cuenoud, B., Brown, T., and Fox, K.R. 2002. Stable DNA triple helix formation using oligonucleotides containing 2′‐aminoethoxy,5‐propargylamino‐U. Biochemistry 41:7224‐7231.
   Sun, J.S., Garestier, T., and Hélène, C. 1996. Oligonucleotide directed triple helix formation. Curr. Opin. Struct. Biol. 6:327‐333.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library