Detection of Hydrogen Bonds in Dynamic Regions of RNA by NMR Spectroscopy

Andre Dallmann1, Michael Sattler2

1 Present address: Division of Molecular Structure, National Institute of Medical Research, London, 2 Center for Integrated Protein Science Munich and Chair of Biomolecular NMR‐Spectroscopy, Department Chemie, Technische Universität München, Garching
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 7.22
DOI:  10.1002/0471142700.nc0722s59
Online Posting Date:  December, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


NMR spectroscopy is a powerful tool to study the structure and dynamics of nucleic acids. In this unit, we give an overview of important experiments to determine and characterize hydrogen bonds in nucleic acids and provide detailed instructions for setting up recently developed sensitivity‐improved NMR pulse sequences, i.e., BEST selective long‐range HNN‐COSY, selective BEST‐TROSY‐HNNCOSY, and Py H(CC)NN‐COSY. The strengths and limitations of these experiments will also be discussed. Detailed step‐by‐step protocols are provided for each of the three pulse sequences, with special emphasis on adjusting and setting of delays and shaped pulses. The NMR pulse sequences with example datasets and optimized, nonstandard adiabatic pulse shapes used for selective 15N magnetization transfer are provided. These experiments enable NMR analysis of a broad variety of RNAs ranging from low to high molecular weight and complexity. © 2014 by John Wiley & Sons, Inc.

Keywords: NMR spectroscopy; hydrogen bonds; dynamics; RNA; sensitivity enhancement

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Best Selective Long‐Range HNN‐COSY (BESTsellr)
  • Basic Protocol 2: Best TROSY‐HNN‐COSY
  • Basic Protocol 3: Pyrimidine (Py) H(CC)NN‐COSY
  • Commentary
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Dallmann, A., Simon, B., Duszczyk, M.M., Kooshapur, H., Pardi, A., Bermel, W., and Sattler, M. 2013. Efficient detection of hydrogen bonds in dynamic regions of RNA by sensitivity‐optimized NMR pulse sequences. Angew. Chem. Int. Ed. 52:10487‐10490.
  Dingley, A.J. and Grzesiek, S. 1998. Direct observation of hydrogen bonds in nucleic acid base pairs by internucleotide 2 J NN couplings. J. Am. Chem. Soc. 120:8293‐8297.
  Dingley, A.J., Masse, J.E., Peterson, R.D., Barfield, M., Feigon, J., and Grzesiek, S. 1999. Internucleotide scalar couplings across hydrogen bonds in Watson−Crick and Hoogsteen base pairs of a DNA triplex. J. Am. Chem. Soc. 121:6019‐6027.
  Dingley, A.J., Masse, J.E., Feigon, J., and Grzesiek, S. 2000. Characterization of the hydrogen bond network in guanosine quartets by. J. Biomol. NMR 16:279‐289.
  Dingley, A.J., Nisius, L., Cordier, F., and Grzesiek, S. 2008. Direct detection of N‐H[ctdot]N hydrogen bonds in biomolecules by NMR spectroscopy. Nat. Protoc. 3:242‐248.
  Duchardt‐Ferner, E., Ferner, J., and Wohnert, J. 2011. Rapid identification of noncanonical RNA structure elements by direct detection of OH…O=P, NH…O=P, and NH2…O=P hydrogen bonds in solution NMR spectroscopy. Angew. Chem. Int. Ed. 50:7927‐7930.
  Duss, O., Lukavsky, P.J., and Allain, F.H. 2012. Isotope labeling and segmental labeling of larger RNAs for NMR structural studies. Adv. Exp. Med. Biol. 992:121‐144.
  Duszczyk, M.M., Zanier, K., and Sattler, M. 2008. A NMR strategy to unambiguously distinguish nucleic acid hairpin and duplex conformations applied to a Xist RNA A‐repeat. Nucleic Acids Res. 36:7068‐7077.
  Emsley, L. and Bodenhausen, G. 1990. Gaussian pulse cascades: New analytical functions for rectangular selective inversion and in‐phase excitation in NMR. Chem. Phys. Lett. 165:469‐476.
  Farjon, J., Boisbouvier, J., Schanda, P., Pardi, A., Simorre, J.‐P., and Brutscher, B. 2009. Longitudinal‐relaxation‐enhanced NMR experiments for the study of nucleic acids in solution. J. Am. Chem. Soc. 131:8571‐8577.
  Geen, H. and Freeman, R. 1991. Band‐selective radiofrequency pulses. J. Mag. Reson. 93:93‐141.
  Hennig, M. and Williamson, J.R. 2000. Detection of N‐H…N hydrogen bonding in RNA via scalar couplings in the absence of observable imino proton resonances. Nucleic Acids Res. 28:1585‐1593.
  Kupce, E. and Freeman, R. 1994. Wideband excitation with polychromatic pulses. J. Magn. Reson. A 108:268‐273.
  Lescop, E., Kern, T., and Brutscher, B. 2010. Guidelines for the use of band‐selective radiofrequency pulses in hetero‐nuclear NMR: Example of longitudinal‐relaxation‐enhanced BEST‐type 1H‐15N correlation experiments. J. Magn. Reson. 203:190‐198.
  Liu, A., Majumdar, A., Hu, W., Kettani, A., Skripkin, E., and Patel, D.J. 2000. NMR detection of N‐H…O=C hydrogen bonds in 13 C, 15 N‐labeled nucleic acids. J. Am. Chem. Soc. 122:3206‐3210.
  Low, J.T. and Weeks, K.M. 2010. SHAPE‐directed RNA secondary structure prediction. Methods 52:150‐158.
  Lu, K., Heng, X., Garyu, L., Monti, S., Garcia, E.L., Kharytonchyk, S., Dorjsuren, B., Kulandaivel, G., Jones, S., Hiremath, A., Divakaruni, S.S., LaCotti, C., Barton, S., Tummillo, D., Hosic, A., Edme, K., Albrecht, S., Telesnitsky, A., and Summers, M.F. 2011. NMR detection of structures in the HIV‐1 5′‐leader RNA that regulate genome packaging. Science 334:242‐245.
  Luy, B. and Marino, J.P. 2000. Direct evidence for Watson‐Crick base pairs in a dynamic region of RNA structure. J. Am. Chem. Soc. 122:8095‐8096.
  Luy, B., Richter, U., DeJong, E.S., Sorensen, O.W., and Marino, J.P. 2002. Observation of H‐bond mediated 3hJH2H3 coupling constants across Watson‐Crick AU base pairs in RNA. J. Biomol. NMR 24:133‐142.
  Majumdar, A. and Patel, D.J. 2002. Identifying hydrogen bond alignments in multistranded DNA architectures by NMR. Acc. Chem. Res. 35:1‐11.
  Majumdar, A., Kettani, A., and Skripkin, E. 1999a. Observation and measurement of internucleotide 2JNN coupling constants between 15N nuclei with widely separated chemical shifts. J. Biomol. NMR 14:67‐70.
  Majumdar, A., Kettani, A., Skripkin, E., and Patel, D.J. 1999b. Observation of internucleotide NH…N hydrogen bonds in the absence of directly detectable protons. J. Biomol. NMR 15:207‐211.
  Majumdar, A., Gosser, Y., and Patel, D.J. 2001a. 1H‐1H correlations across N‐H…N hydrogen bonds in nucleic acids. J. Biomol. NMR 21:289‐306.
  Majumdar, A., Kettani, A., Skripkin, E., and Patel, D.J. 2001b. Pulse sequences for detection of NH2…N hydrogen bonds in sheared G . A mismatches via remote, non‐exchangeable protons. J. Biomol. NMR 19:103‐113.
  Pervushin, K., Ono, A., Fernandez, C., Szyperski, T., Kainosho, M., and Wuthrich, K. 1998. NMR scalar couplings across Watson‐Crick base pair hydrogen bonds in DNA observed by transverse relaxation‐optimized spectroscopy. Proc. Natl. Acad. Sci. U.S.A. 95:14147‐14151.
  Pitt, S.W., Majumdar, A., Serganov, A., Patel, D.J., and Al‐Hashimi, H.M. 2004. Argininamide binding arrests global motions in HIV‐1 TAR RNA: Comparison with Mg2+‐induced conformational stabilization. J. Mol. Biol 338:7‐16.
  Schanda, P., Kupce, E., and Brutscher, B. 2005. SOFAST‐HMQC experiments for recording two‐dimensional heteronuclear correlation spectra of proteins within a few seconds. J. Biomol. NMR 33:199‐211.
  Schanda, P., Van Melckebeke, H., and Brutscher, B. 2006. Speeding up three‐dimensional protein NMR experiments to a few minutes. J. Am. Chem. Soc. 128:9042‐9043.
  Tannús, A. and Garwood, M. 1996. Improved performance of frequency‐swept pulses using offset‐independent adiabaticity. J. Magn. Res. A 120:133‐137.
  Tzakos, A.G., Grace, C.R., Lukavsky, P.J., and Riek, R. 2006. NMR techniques for very large proteins and rnas in solution. Annu. Rev. Biophys. Biomol. Struct. 35:319‐342.
  Zweckstetter, M. and Holak, T.A. 1998. An adiabatic multiple spin‐echo pulse sequence: Removal of systematic errors due to pulse imperfections and off‐resonance effects. J. Magn. Res. 133:134‐147.
Key Reference
  Dallmann et al., 2013. See above.
  This is the original publication of the BESTsellr HNN‐COSY and Py H(CC)NN‐COSY experiments, including more theoretical background on the pulse sequences. The protocols presented here focus on practical aspects of the implementation of these experiments.
PDF or HTML at Wiley Online Library