Human Biomonitoring of DNA Adducts by Ion Trap Multistage Mass Spectrometry

Jingshu Guo1, Robert J. Turesky1

1 Masonic Cancer Center and Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 7.24
DOI:  10.1002/cpnc.12
Online Posting Date:  September, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Humans are continuously exposed to hazardous chemicals in the environment. These chemicals or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. The identification of DNA adducts is required for understanding exposure and the etiological role of a genotoxic chemical in cancer risk. The analytical chemist is confronted with a great challenge because the levels of DNA adducts generally occur at <1 adduct per 107 nucleotides, and the amount of tissue available for measurement is limited. Ion trap mass spectrometry has emerged as an important technique to screen for DNA adducts because of the high level sensitivity and selectivity, particularly when employing multi‐stage scanning (MSn). The product ion spectra provide rich structural information and corroborate the adduct identities even at trace levels in human tissues. Ion trap technology represents a significant advance in measuring DNA adducts in humans. © 2016 by John Wiley & Sons, Inc.

Keywords: biomonitoring; DNA adducts; ion trap mass spectrometry

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Methods to Measure DNA Adducts
  • Fundamentals of the Ion Trap
  • Literature Review
  • How to Achieve Successful Measurement
  • Conclusions and Future Directions
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aguilar, F., Harris, C.C., Sun, T., Hollstein, M., and Cerutti, P. 1994. Geographic variation of p53 mutational profile in nonmalignant human liver. Science 264:1317‐1319. doi: 10.1126/science.8191284.
  Balbo, S., Villalta, P.W., and Hecht, S.S. 2011. Quantitation of 7‐ethylguanine in leukocyte DNA from smokers and nonsmokers by liquid chromatography‐nanoelectrospray‐high resolution tandem mass spectrometry. Chem. Res. Toxicol. 24:1729‐1734. doi: 10.1021/tx200262d.
  Balbo, S., Meng, L., Bliss, R.L., Jensen, J.A., Hatsukami, D.K., and Hecht, S.S. 2012. Kinetics of DNA adduct formation in the oral cavity after drinking alcohol. Cancer Epidemiol. Biomarkers Prev. 21:601‐608. doi: 10.1158/1055‐9965.EPI‐11‐1175.
  Balbo, S., Hecht, S.S., Upadhyaya, P., and Villalta, P.W. 2014a. Application of a high‐resolution mass‐spectrometry‐based DNA adductomics approach for identification of DNA adducts in complex mixtures. Anal. Chem. 86:1744‐1752. doi: 10.1021/ac403565m.
  Balbo, S., Turesky, R.J., and Villalta, P.W. 2014b. DNA adductomics. Chem. Res. Toxicol. 27:356‐366. doi: 10.1021/tx4004352.
  Beland, F.A. and Kadlubar, F.F. 1985. Formation and persistence of arylamine DNA adducts in vivo. Environ. Health Perspect. 62:19‐30. doi: 10.1289/ehp.856219.
  Beland, F.A., Beranek, D.T., Dooley, K.L., Heflich, R.H., and Kadlubar, F.F. 1983. Arylamine‐DNA adducts in vitro and in vivo: Their role in bacterial mutagenesis and urinary bladder carcinogenesis. Environ. Health Perspect. 49:125‐134. doi: 10.1289/ehp.8349125.
  Beland, F.A., Doerge, D.R., Churchwell, M.I., Poirier, M.C., Schoket, B., and Marques, M.M. 1999. Synthesis, characterization, and quantitation of a 4‐aminobiphenyl‐DNA adduct standard. Chem. Res. Toxicol. 12:68‐77. doi: 10.1021/tx980172y.
  Bessette, E.E., Goodenough, A.K., Langouet, S., Yasa, I., Kozekov, I.D., Spivack, S.D., and Turesky, R.J. 2009. Screening for DNA adducts by data‐dependent constant neutral loss‐triple stage mass spectrometry with a linear quadrupole ion trap mass spectrometer. Anal. Chem. 81:809‐819. doi: 10.1021/ac802096p.
  Bessette, E.E., Spivack, S.D., Goodenough, A.K., Wang, T., Pinto, S., Kadlubar, F.F., and Turesky, R.J. 2010. Identification of carcinogen DNA adducts in human saliva by linear quadrupole ion trap/multistage tandem mass spectrometry. Chem. Res. Toxicol. 23:1234‐1244. doi: 10.1021/tx100098f.
  Bhattacharya, S., Barbacci, D.C., Shen, M., Liu, J.N., and Casale, G.P. 2003. Extraction and purification of depurinated benzo[a]pyrene‐adducted DNA bases from human urine by immunoaffinity chromatography coupled with HPLC and analysis by LC/quadrupole ion‐trap MS. Chem. Res. Toxicol. 16:479‐486. doi: 10.1021/tx020060d.
  Boysen, G., Pachkowski, B.F., Nakamura, J., and Swenberg, J.A. 2009. The formation and biological significance of N7‐guanine adducts. Mutat. Res. 678:76‐94. doi: 10.1016/j.mrgentox.2009.05.006.
  Brown, K. 2012. Methods for the detection of DNA adducts. Methods Mol. Biol. 817:207‐230. doi: 10.1007/978‐1‐61779‐421‐6_11.
  Brown, K., Guenther, E.A., Dingley, K.H., Cosman, M., Harvey, C.A., Shields, S.J., and Turteltaub, K.W. 2001. Synthesis and spectroscopic characterization of site‐specific 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine oligodeoxyribonucleotide adducts. Nucleic Acids Res. 29:1951‐1959. doi: 10.1093/nar/29.9.1951.
  Cavalieri, E.L. and Rogan, E.G. 1997. Role of aromatic hydrocarbons in disclosing how catecholestrogens initiate cancer. Adv. Pharmacol. 42:837‐840. doi: 10.1016/S1054‐3589(08)60876‐5.
  Chen, C.H., Dickman, K.G., Moriya, M., Zavadil, J., Sidorenko, V.S., Edwards, K.L., Gnatenko, D.V., Wu, L., Turesky, R.J., Wu, X.R., Pu, Y.S., and Grollman, A.P. 2012. Aristolochic acid‐associated urothelial cancer in Taiwan. Proc. Natl. Acad. Sci. U.S.A. 109:8241‐8246. doi: 10.1073/pnas.1119920109.
  Chen, S.Y., Wang, L.Y., Lunn, R.M., Tsai, W.Y., Lee, P.H., Lee, C.S., Ahsan, H., Zhang, Y.J., Chen, C.J., and Santella, R.M. 2002. Polycyclic aromatic hydrocarbon‐DNA adducts in liver tissues of hepatocellular carcinoma patients and controls. Int. J. Cancer 99:14‐21. doi: 10.1002/ijc.10291.
  Clemons, M. and Goss, P. 2001. Estrogen and the risk of breast cancer. N. Engl. J. Med. 344:276‐285. doi: 10.1056/NEJM200101253440407.
  Collins, A.R., Cadet, J., Moller, L., Poulsen, H.E., and Vina, J. 2004. Are we sure we know how to measure 8‐oxo‐7,8‐dihydroguanine in DNA from human cells? Arch. Biochem. Biophys. 423:57‐65. doi: 10.1016/j.abb.2003.12.022.
  Davis, M.T., Stahl, D.C., Hefta, S.A., and Lee, T.D. 1995. A microscale electrospray interface for on‐line, capillary liquid chromatography/tandem mass spectrometry of complex peptide mixtures. Anal. Chem. 67:4549‐4556. doi: 10.1021/ac00120a019.
  De Broe, M.E. 2012. Chinese herbs nephropathy and Balkan endemic nephropathy: Toward a single entity, aristolochic acid nephropathy. Kidney Int. 81:513‐515. doi: 10.1038/ki.2011.428.
  De Hoffmann, E. and Stroobant, V. 2007. Mass Spectrometry: Principles, and Applications, 3rd Edition. Wiley, Chichester, U.K.
  Divi, R.L., Beland, F.A., Fu, P.P., Von Tungeln, L.S., Schoket, B., Camara, J.E., Ghei, M., Rothman, N., Sinha, R., and Poirier, M.C. 2002. Highly sensitive chemiluminescence immunoassay for benzo[a]pyrene‐DNA adducts: Validation by comparison with other methods, and use in human biomonitoring. Carcinogenesis 23:2043‐2049. doi: 10.1093/carcin/23.12.2043.
  Dizdaroglu, M., Coskun, E., and Jaruga, P. 2015. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic. Res. 49:525‐548. doi: 10.3109/10715762.2015.1014814.
  Dong, H., Suzuki, N., Torres, M.C., Bonala, R.R., Johnson, F., Grollman, A.P., and Shibutani, S. 2006. Quantitative determination of aristolochic acid‐derived DNA adducts in rats using 32P‐postlabeling/polyacrylamide gel electrophoresis analysis. Drug Metab. Dispos. 34:1122‐1127. doi: 10.1124/dmd.105.008706.
  Douglas, D.J., Frank, A.J., and Mao, D. 2005. Linear ion traps in mass spectrometry. Mass Spectrom. Rev. 24:1‐29. doi: 10.1002/mas.20004.
  El‐Faramawy, A., Siu, K.W., and Thomson, B.A. 2005. Efficiency of nano‐electrospray ionization. J. Am. Soc. Mass. Spectrom. 16:1702‐1707. doi: 10.1016/j.jasms.2005.06.011.
  Faraglia, B., Chen, S.Y., Gammon, M.D., Zhang, Y., Teitelbaum, S.L., Neugut, A.I., Ahsan, H., Garbowski, G.C., Hibshoosh, H., Lin, D., Kadlubar, F.F., and Santella, R.M. 2003. Evaluation of 4‐aminobiphenyl‐DNA adducts in human breast cancer: The influence of tobacco smoke. Carcinogenesis 24:719‐725. doi: 10.1093/carcin/bgg013.
  Fenn, J.B., Mann, M., Meng, C.K., Wong, S.F., and Whitehouse, C.M. 1989. Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64‐71. doi: 10.1126/science.2675315.
  Fink, S.P., Reddy, G.R., and Marnett, L.J. 1997. Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc. Natl. Acad. Sci. U.S.A. 94:8652‐8657. doi: 10.1073/pnas.94.16.8652.
  Gaikwad, N.W., Yang, L., Pruthi, S., Ingle, J.N., Sandhu, N., Rogan, E.G., and Cavalieri, E.L. 2009. Urine biomarkers of risk in the molecular etiology of breast cancer. Breast Cancer (Auckl) 3:1‐8.
  Gammon, M.D., Wolff, M.S., Neugut, A.I., Eng, S.M., Teitelbaum, S.L., Britton, J.A., Terry, M.B., Levin, B., Stellman, S.D., Kabat, G.C., Hatch, M., Senie, R., Berkowitz, G., Bradlow, H.L., Garbowski, G., Maffeo, C., Montalvan, P., Kemeny, M., Citron, M., Schnabel, F., Schuss, A., Hajdu, S., Vinceguerra, V., Niguidula, N., Ireland, K., and Santella, R.M. 2002. Environmental toxins and breast cancer on Long Island. II. Organochlorine compound levels in blood. Cancer Epidemiol. Biomarkers Prev. 11:686‐697.
  Gedik, C.M., Collins, A., and ESCODD. 2005. Establishing the background level of base oxidation in human lymphocyte DNA: Results of an interlaboratory validation study. FASEB J. 19:82‐84. doi: 10.1096/fj.04‐1767fje.
  Glasel, J.A. 1995. Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. BioTechniques 18:62‐63.
  Goggin, M., Sangaraju, D., Walker, V.E., Wickliffe, J., Swenberg, J.A., and Tretyakova, N. 2011. Persistence and repair of bifunctional DNA adducts in tissues of laboratory animals exposed to 1,3‐butadiene by inhalation. Chem. Res. Toxicol. 24:809‐817. doi: 10.1021/tx200009b.
  Goodenough, A.K., Schut, H.A., and Turesky, R.J. 2007. Novel LC‐ESI/MS/MSn method for the characterization and quantification of 2'‐deoxyguanosine adducts of the dietary carcinogen 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine by 2‐D linear quadrupole ion trap mass spectrometry. Chem. Res. Toxicol. 20:263‐276. doi: 10.1021/tx0601713.
  Gorlewska‐Roberts, K., Green, B., Fares, M., Ambrosone, C.B., and Kadlubar, F.F. 2002. Carcinogen‐DNA adducts in human breast epithelial cells. Environ. Mol. Mutagen. 39:184‐192. doi: 10.1002/em.10060.
  Grollman, A.P. 2013. Aristolochic acid nephropathy: Harbinger of a global iatrogenic disease. Environ. Mol. Mutagen. 54:1‐7. doi: 10.1002/em.21756.
  Gu, D., Turesky, R.J., Tao, Y., Langouet, S.A., Nauwelaers, G.C., Yuan, J.M., Yee, D., and Yu, M.C. 2012. DNA adducts of 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine and 4‐aminobiphenyl are infrequently detected in human mammary tissue by liquid chromatography/tandem mass spectrometry. Carcinogenesis 33:124‐130. doi: 10.1093/carcin/bgr252.
  Guo, J., Yonemori, K., Le Marchand, L., and Turesky, R.J. 2015. Method to biomonitor the cooked meat carcinogen 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine in dyed hair by ultra‐performance liquid chromatography‐orbitrap high resolution multistage mass spectrometry. Anal. Chem. 87:5872‐5877. doi: 10.1021/acs.analchem.5b01129.
  Guo, J., Yun, B.H., Upadhyaya, P., Yao, L., Krishnamachari, S., Rosenquist, T.A., Grollman, A.P., and Turesky, R.J. 2016. Multi‐class carcinogenic DNA adduct quantification in formalin‐fixed paraffin‐embedded tissues by ultra‐performance liquid chromatography— tandem mass spectrometry. Anal. Chem. 88:4780‐4787. doi: 10.1021/acs.analchem.6b00124.
  Gupta, R.C. 1993. 32P‐postlabelling analysis of bulky aromatic adducts. IARC Sci. Publ. 11‐23.
  Hecht, S.S., Trushin, N., Castonguay, A., and Rivenson, A. 1986. Comparative tumorigenicity and DNA methylation in F344 rats by 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone and N‐nitrosodimethylamine. Cancer Res. 46:498‐502.
  Hoang, M.L., Chen, C.H., Sidorenko, V.S., He, J., Dickman, K.G., Yun, B.H., Moriya, M., Niknafs, N., Douville, C., Karchin, R., Turesky, R.J., Pu, Y.S., Vogelstein, B., Papadopoulos, N., Grollman, A.P., Kinzler, K.W., and Rosenquist, T.A. 2013. Mutational signature of aristolochic acid exposure as revealed by whole‐exome sequencing. Sci. Transl. Med. 5:197ra102. doi: 10.1126/scitranslmed.3006200.
  Hopfgartner, G., Bean, K., Henion, J., and Henry, R. 1993. Ion‐spray mass‐spectrometric detection for liquid‐chromatography: A concentration‐ or a mass‐flow‐sensitive device. J. Chromatog. 647:51‐61. doi: 10.1016/0021‐9673(93)83323‐K.
  Hsu, T.M., Zhang, Y.J., and Santella, R.M. 1997. Immunoperoxidase quantitation of 4‐aminobiphenyl‐ and polycyclic aromatic hydrocarbon‐DNA adducts in exfoliated oral and urothelial cells of smokers and nonsmokers. Cancer Epidemiol. Biomarkers Prev. 6:193‐199.
  Huang, M., Blair, I.A., and Penning, T.M. 2013. Identification of stable benzo[a]pyrene‐7,8‐dione‐DNA adducts in human lung cells. Chem. Res. Toxicol. 26:685‐692. doi: 10.1021/tx300476m.
  IARC Working Group. 1983. Polynuclear Aromatic Compounds, Part 1, Chemical, Environmental and Experimental Data. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 32. pp. 1‐477. International Agency for Research on Cancer, Lyon, France.
  IARC Working Group. 1986. Tobacco Smoking. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 38. pp. 1‐421. International Agency for Research on Cancer, Lyon, France.
  IARC Working Group. 2012. Chemical Agents and Related Occupations. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, Vol. 100F. pp. 1‐565. International Agency for Research on Cancer, Lyon, France.
  Izard, C. and Libermann, C. 1978. Acrolein. Mutat. Res. 47:115‐138. doi: 10.1016/0165‐110(78)90016‐7.
  Jelakovic, B., Karanovic, S., Vukovic‐Lela, I., Miller, F., Edwards, K.L., Nikolic, J., Tomic, K., Slade, N., Brdar, B., Turesky, R.J., Stipancic, Z., Dittrich, D., Grollman, A.P., and Dickman, K.G. 2012. Aristolactam‐DNA adducts are a biomarker of environmental exposure to aristolochic acid. Kidney Int. 81:559‐567. doi: 10.1038/ki.2011.371.
  Kanaly, R.A., Matsui, S., Hanaoka, T., and Matsuda, T. 2007. Application of the adductome approach to assess intertissue DNA damage variations in human lung and esophagus. Mutat. Res. 625:83‐93. doi: 10.1016/j.mrfmmm.2007.05.006.
  Klaene, J.J., Sharma, V.K., Glick, J., and Vouros, P. 2013. The analysis of DNA adducts: The transition from 32P‐postlabeling to mass spectrometry. Cancer Lett. 334:10‐19. doi: 10.1016/j.canlet.2012.08.007.
  Klaene, J.J., Flarakos, C., Glick, J., Barret, J.T., Zarbl, H., and Vouros, P. 2015. Tracking matrix effects in the analysis of DNA adducts of polycyclic aromatic hydrocarbons. J. Chromatogr. A. 1439:112‐123. doi: 10.1016/j.chroma.2015.10.057.
  Kozekov, I.D., Turesky, R.J., Alas, G.R., Harris, C.M., Harris, T.M., and Rizzo, C.J. 2010. Formation of deoxyguanosine cross‐links from calf thymus DNA treated with acrolein and 4‐hydroxy‐2‐nonenal. Chem. Res. Toxicol. 23:1701‐1713. doi: 10.1021/tx100179g.
  Langouet, S., Coles, B., Morel, F., Becquemont, L., Beaune, P., Guengerich, F.P., Ketterer, B., and Guillouzo, A. 1995. Inhibition of Cyp1a2 and Cyp3a4 by oltipraz results in reduction of aflatoxin B‐1 metabolism in human hepatocytes in primary culture. Cancer Res. 55:5574‐5579.
  Langouet, S., Welti, D.H., Kerriguy, N., Fay, L.B., Huynh‐Ba, T., Markovic, J., Guengerich, F.P., Guillouzo, A., and Turesky, R.J. 2001. Metabolism of 2‐amino‐3,8‐dimethylimidazo[4,5‐f]quinoxaline in human hepatocytes: 2‐amino‐3‐methylimidazo[4,5‐f]quinoxaline‐8‐carboxylic acid is a major detoxification pathway catalyzed by cytochrome P450 1A2. Chem. Res. Toxicol. 14:211‐221. doi: 10.1021/tx000176e.
  Langouet, S., Paehler, A., Welti, D.H., Kerriguy, N., Guillouzo, A., and Turesky, R.J. 2002. Differential metabolism of 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]pyridine in rat and human hepatocytes. Carcinogenesis 23:115‐122. doi: 10.1093/carcin/23.1.115.
  Lao, Y., Yu, N., Kassie, F., Villalta, P.W., and Hecht, S.S. 2007. Formation and accumulation of pyridyloxobutyl DNA adducts in F344 rats chronically treated with 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanone and enantiomers of its metabolite, 4‐(methylnitrosamino)‐1‐(3‐pyridyl)‐1‐butanol. Chem. Res. Toxicol. 20:235‐245. doi: 10.1021/tx060207r.
  Lewtas, J. 1993. Airborne carcinogens. Pharmacol. Toxicol. 72(Suppl 1):55‐63. doi: 10.1111/j.1600‐0773.1993.tb01670.x.
  Liebler, D.C. 2002. Proteomic approaches to characterize protein modifications: New tools to study the effects of environmental exposures. Environ. Health Perspect. 110(Suppl 1):3‐9. doi: 10.1289/ehp.02110s113.
  Lin, H.S., Jenner, A.M., Ong, C.N., Huang, S.H., Whiteman, M., and Halliwell, B. 2004. A high‐throughput and sensitive methodology for the quantification of urinary 8‐hydroxy‐2'‐deoxyguanosine: Measurement with gas chromatography‐mass spectrometry after single solid‐phase extraction. Biochem. J. 380:541‐548. doi: 10.1042/bj20040004.
  Liu, S. and Wang, Y. 2015. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem. Soc. Rev. 44:7829‐7854. doi: 10.1039/C5CS00316D.
  Liu, X., Lovell, M.A., and Lynn, B.C. 2005. Development of a method for quantification of acrolein‐deoxyguanosine adducts in DNA using isotope dilution‐capillary LC/MS/MS and its application to human brain tissue. Anal. Chem. 77:5982‐5989. doi: 10.1021/ac050624t.
  Liu, X., Lovell, M.A., and Lynn, B.C. 2006. Detection and quantification of endogenous cyclic DNA adducts derived from trans‐4‐hydroxy‐2‐nonenal in human brain tissue by isotope dilution capillary liquid chromatography nanoelectrospray tandem mass spectrometry. Chem. Res. Toxicol. 19:710‐718. doi: 10.1021/tx0502903.
  Loeb, L.A. and Harris, C.C. 2008. Advances in chemical carcinogenesis: A historical review and prospective. Cancer Res. 68:6863‐6872. doi: 10.1158/0008‐5472.CAN‐08‐2852.
  Luceri, F., Pieraccini, G., Moneti, G., and Dolara, P. 1993. Primary aromatic amines from side‐stream cigarette smoke are common contaminants of indoor air. Toxicol. Ind. Health 9:405‐413. doi: 10.1177/074823379300900302.
  Ma, B., Villalta, P.W., Balbo, S., and Stepanov, I. 2014. Analysis of a malondialdehyde‐deoxyguanosine adduct in human leukocyte DNA by liquid chromatography nanoelectrospray‐high‐resolution tandem mass spectrometry. Chem. Res. Toxicol. 27:1829‐1836. doi: 10.1021/tx5002699.
  Maniatis, T., Fritsch, E.F., and Sambrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Plainview, N.Y.
  Marnett, L.J. 1999. Lipid peroxidation‐DNA damage by malondialdehyde. Mutat. Res. 424:83‐95. doi: 10.1016/S0027‐5107(99)00010‐X.
  Matsumoto, Y., Ogawa, Y., Yoshida, R., Shimamori, A., Kasai, H., and Ohta, H. 2008. The stability of the oxidative stress marker, urinary 8‐hydroxy‐2'‐deoxyguanosine (8‐OHdG), when stored at room temperature. J. Occup. Health 50:366‐372. doi: 10.1539/joh.L7144.
  McClellan, J.E., Murphy, J.P., 3rd, Mulholland, J.J., and Yost, R.A. 2002. Effects of fragile ions on mass resolution and on isolation for tandem mass spectrometry in the quadrupole ion trap mass spectrometer. Anal. Chem. 74:402‐412. doi: 10.1021/ac015610b.
  McGlynn, K.A. and London, W.T. 2011. The global epidemiology of hepatocellular carcinoma: Present and future. Clin. Liver Dis. 15:223‐243. doi: 10.1016/j.cld.2011.03.006.
  Miller, J.A. 1970. Carcinogenesis by chemicals: An overview—G. H. A. Clowes memorial lecture. Cancer Res. 30:559‐576.
  Motykiewicz, G., Malusecka, E., Grzybowska, E., Chorazy, M., Zhang, Y.J., Perera, F.P., and Santella, R.M. 1995. Immunohistochemical quantitation of polycyclic aromatic hydrocarbon‐DNA adducts in human lymphocytes. Cancer Res. 55:1417‐1422.
  Nath, R.G. and Chung, F.L. 1994. Detection of exocyclic 1,N2‐propanodeoxyguanosine adducts as common DNA lesions in rodents and humans. Proc. Natl. Acad. Sci. U.S.A. 91:7491‐7495. doi: 10.1073/pnas.91.16.7491.
  Nath, R.G., Ocando, J.E., and Chung, F.L. 1996. Detection of 1, N2‐propanodeoxyguanosine adducts as potential endogenous DNA lesions in rodent and human tissues. Cancer Res. 56:452‐456.
  Nath, R.G., Ocando, J.E., Guttenplan, J.B., and Chung, F.L. 1998. 1,N2‐propanodeoxyguanosine adducts: Potential new biomarkers of smoking‐induced DNA damage in human oral tissue. Cancer Res. 58:581‐584.
  Nauwelaers, G., Bessette, E.E., Gu, D., Tang, Y., Rageul, J., Fessard, V., Yuan, J.M., Yu, M.C., Langouet, S., and Turesky, R.J. 2011. DNA adduct formation of 4‐aminobiphenyl and heterocyclic aromatic amines in human hepatocytes. Chem. Res. Toxicol. 24:913‐925. doi: 10.1021/tx200091y.
  Nordhoff, E., Kirpekar, F., Karas, M., Cramer, R., Hahner, S., Hillenkamp, F., Kristiansen, K., Roepstroff, P., and Lezius, A. 1994. Comparison of IR‐ and UV‐matrix‐assisted laser desorption/ionization mass spectrometry of oligodeoxynucleotides. Nucleic Acids Res. 22:2460‐2465. doi: 10.1093/nar/22.13.2460.
  Olsen, J.V., Schwartz, J.C., Griep‐Raming, J., Nielsen, M.L., Damoc, E., Denisov, E., Lange, O., Remes, P., Taylor, D., Splendore, M., Wouters, E.R., Senko, M., Makarov, A., Mann, M., and Horning, S. 2009. A dual pressure linear ion trap orbitrap instrument with very high sequencing speed. Mol. Cell Proteomics 8:2759‐2769. doi: 10.1074/mcp.M900375‐MCP200.
  Paehler, A., Richoz, J., Soglia, J., Vouros, P., and Turesky, R.J. 2002. Analysis and quantification of DNA adducts of 2‐amino‐3,8‐dimethylimidazo[4,5‐f]quinoxaline in liver of rats by liquid chromatography/electrospray tandem mass spectrometry. Chem. Res. Toxicol. 15:551‐561. doi: 10.1021/tx010178e.
  Patrianakos, C. and Hoffmann, D. 1979. Chemical studies on tobacco smoke LXIV. On the analysis of aromatic amines in cigarette smoke. J. Anal. Toxicol. 3:150‐154. doi: 10.1093/jat/3.4.150.
  Paul, W. 1990. Electromagnetic traps for charged and neutral particles (Nobel lecture). Agnew Chem. Int. Ed. Engl. 29:739‐748. doi: 10.1002/anie.199007391.
  Payne, A.H. and Glish, G.L. 2005. Tandem mass spectrometry in quadrupole ion trap and ion cyclotron resonance mass spectrometers. Methods Enzymol. 402:109‐148. doi: 10.1016/S0076‐6879(05)02004‐5.
  Penning, T.M. 2014. Human aldo‐keto reductases and the metabolic activation of polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 27:1901‐1917. doi: 10.1021/tx500298n.
  Pfeifer, G.P., Denissenko, M.F., Olivier, M., Tretyakova, N., Hecht, S.S., and Hainaut, P. 2002. Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking‐associated cancers. Oncogene 21:7435‐7451. doi: 10.1038/sj.onc.1205803.
  Phillips, D.H. 2013. On the origins and development of the 32P‐postlabelling assay for carcinogen‐DNA adducts. Cancer Lett. 334:5‐9. doi: 10.1016/j.canlet.2012.11.027.
  Phillips, D.H., Farmer, P.B., Beland, F.A., Nath, R.G., Poirier, M.C., Reddy, M.V., and Turteltaub, K.W. 2000. Methods of DNA adduct determination and their application to testing compounds for genotoxicity. Environ. Mol. Mutagen. 35:222‐233. doi: 10.1002/(SICI)1098‐2280(2000)35:3%3c222::AID‐EM9%3e3.0.CO;2‐E.
  Poirier, M.C., Santella, R.M., and Weston, A. 2000. Carcinogen macromolecular adducts and their measurement. Carcinogenesis 21:353‐359. doi: 10.1093/carcin/21.3.353.
  Pratt, M.M., John, K., MacLean, A.B., Afework, S., Phillips, D.H., and Poirier, M.C. 2011. Polycyclic aromatic hydrocarbon (PAH) exposure and DNA adduct semi‐quantitation in archived human tissues. Int. J. Environ. Res. Public Health 8:2675‐2691. doi: 10.3390/ijerph8072675.
  Price, J.M., Miller, E.C., and Miller, J.A. 1948. The intracellular distribution of protein, nucleic acids, riboflavin, and protein‐bound aminoazo dye in the livers of rats fed p‐dimethylaminoazobenzene. J. Biol. Chem. 173:345‐353.
  Randall, K.L., Argoti, D., Paonessa, J.D., Ding, Y., Oaks, Z., Zhang, Y., and Vouros, P. 2010. An improved liquid chromatography‐tandem mass spectrometry method for the quantification of 4‐aminobiphenyl DNA adducts in urinary bladder cells and tissues. J. Chromatogr. A 1217:4135‐4143. doi: 10.1016/j.chroma.2009.11.006.
  Randerath, K., Reddy, M.V., and Gupta, R.C. 1981. 32P‐labeling test for DNA damage. Proc. Natl. Acad. Sci U.S.A. 78:6126‐6129. doi: 10.1073/pnas.78.10.6126.
  Rappaport, S.M., Li, H., Grigoryan, H., Funk, W.E., and Williams, E.R. 2012. Adductomics: Characterizing exposures to reactive electrophiles. Toxicol. Lett. 213:83‐90. doi: 10.1016/j.toxlet.2011.04.002.
  Ravanat, J.L., Turesky, R.J., Gremaud, E., Trudel, L.J., and Stadler, R.H. 1995. Determination of 8‐oxoguanine in DNA by gas chromatography‐mass spectrometry and HPLC‐electrochemical detection: Overestimation of the background level of the oxidized base by the gas chromatography‐mass spectrometry assay. Chem. Res. Toxicol. 8:1039‐1045. doi: 10.1021/tx00050a007.
  Ravanat, J.L., Cadet, J., and Douki, T. 2012. Oxidatively generated DNA lesions as potential biomarkers of in vivo oxidative stress. Curr. Mol. Med. 12:655‐671. doi: 10.2174/156652412800792651.
  Rota, C., Cristoni, S., Trenti, T., and Cariani, E. 2013. A serially coupled stationary phase method for the determination of urinary 8‐oxo‐7,8‐dihydro‐2'‐deoxyguanosine by liquid chromatography ion trap tandem mass spectrometry. Redox Biol. 1:492‐497. doi: 10.1016/j.redox.2013.10.001.
  Sangaraju, D., Villalta, P., Goggin, M., Agunsoye, M.O., Campbell, C., and Tretyakova, N. 2013. Capillary HPLC‐accurate mass MS/MS quantitation of N7‐(2,3,4‐trihydroxybut‐1‐yl)‐guanine adducts of 1,3‐butadiene in human leukocyte DNA. Chem. Res. Toxicol. 26:1486‐1497. doi: 10.1021/tx400213m.
  Sangaraju, D., Villalta, P.W., Wickramaratne, S., Swenberg, J., and Tretyakova, N. 2014. NanoLC/ESI+ HRMS3 quantitation of DNA adducts induced by 1,3‐butadiene. J. Am. Soc. Mass Spectrom. 25:1124‐1135. doi: 10.1007/s13361‐014‐0916‐x.
  Santella, R.M. 1999. Immunological methods for detection of carcinogen‐DNA damage in humans. Cancer Epidemiol. Biomarkers Prev. 8:733‐739.
  Schmidt, A., Karas, M., and Dulcks, T. 2003. Effect of different solution flow rates on analyte ion signals in nano‐ESI MS, or: When does ESI turn into nano‐ESI? J. Am. Soc. Mass Spectrom. 14:492‐500. doi: 10.1016/S1044‐0305(03)00128‐4.
  Schwartz, J.C., Senko, M.W., and Syka, J.E. 2002. A two‐dimensional quadrupole ion trap mass spectrometer. J. Am. Soc. Mass Spectrom. 13:659‐669. doi: 10.1016/S1044‐0305(02)00384‐7.
  Scigelova, M. and Makarov, A. 2013. Fundamentals and Advances of Orbitrap Mass Spectrometry. In Encyclopedia of Analytical Chemistry, Mass Spectrometry. pp. 1‐36. doi: 10.1002/9780470027318.a9309. Wiley, Chichester, U.K.
  Shen, Y., Zhao, R., Berger, S.J., Anderson, G.A., Rodriguez, N., and Smith, R.D. 2002. High‐efficiency nanoscale liquid chromatography coupled on‐line with mass spectrometry using nanoelectrospray ionization for proteomics. Anal. Chem. 74:4235‐4249. doi: 10.1021/ac0202280.
  Shibutani, S., Gentles, R.G., Iden, C.R., and Johnson, F. 1990. Facile aerial oxidation of the DNA‐base adduct N‐(2′‐deoxyguanosin‐8‐Yl)‐2‐aminofluorene [Dg(C8)Af]. J. Am. Chem. Soc. 112:5667‐5668. doi: 10.1021/ja00170a056.
  Singh, R. and Farmer, P.B. 2006. Liquid chromatography‐electrospray ionization‐mass spectrometry: The future of DNA adduct detection. Carcinogenesis 27:178‐196. doi: 10.1093/carcin/bgi260.
  Skipper, P.L., Peng, X., Soohoo, C.K., and Tannenbaum, S.R. 1994. Protein adducts as biomarkers of human carcinogen exposure. Drug Metab. Rev. 26:111‐124. doi: 10.3109/03602539409029787.
  Smela, M.E., Hamm, M.L., Henderson, P.T., Harris, C.M., Harris, T.M., and Essigmann, J.M. 2002. The aflatoxin B1 formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma. Proc. Natl. Acad. Sci. U.S.A. 99:6655‐6660. doi: 10.1073/pnas.102167699.
  Stafford, G., Jr. 2002. Ion trap mass spectrometry: A personal perspective. J. Am. Soc. Mass Spectrom. 13:589‐596. doi: 10.1016/S1044‐0305(02)00385‐9.
  Stone, M.P., Banerjee, S., Brown, K.L., and Egli, M. 2011. Chemistry and biology of aflatoxin‐DNA adducts. Front. Nucleic Acids 1082:147‐166. doi: 10.1021/bk‐2011‐1082.ch009.
  Sugimura, T., Wakabayashi, K., Nakagama, H., and Nagao, M. 2004. Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 95:290‐299. doi: 10.1111/j.1349‐7006.2004.tb03205.x.
  Talaska, G., Dooley, K.L., and Kadlubar, F.F. 1990. Detection and characterization of carcinogen‐DNA adducts in exfoliated urothelial cells from 4‐aminobiphenyl‐treated dogs by 32P‐postlabelling and subsequent thin‐layer and high‐pressure liquid chromatography. Carcinogenesis 11:639‐646. doi: 10.1093/carcin/11.4.639.
  Tang, Y., Kassie, F., Qian, X., Ansha, B., and Turesky, R.J. 2013. DNA adduct formation of 2‐amino‐9H‐pyrido[2,3‐b]indole and 2‐amino‐3,4‐dimethylimidazo[4,5‐f]quinoline in mouse liver and extrahepatic tissues during a subchronic feeding study. Toxicol. Sci. 133:248‐258. doi: 10.1093/toxsci/kft077.
  Tretyakova, N., Goggin, M., Sangaraju, D., and Janis, G. 2012. Quantitation of DNA adducts by stable isotope dilution mass spectrometry. Chem. Res. Toxicol. 25:2007‐2035. doi: 10.1021/tx3002548.
  Turesky, R.J. and Vouros, P. 2004. Formation and analysis of heterocyclic aromatic amine‐DNA adducts in vitro and in vivo. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 802:155‐166. doi: 10.1016/j.jchromb.2003.10.053.
  Uchida, K. 1999. Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc. Med. 9:109‐113. doi: 10.1016/S1050‐1738(99)00016‐X.
  Vanherweghem, J.L., Debelle, F.D., Muniz Martinez, M.C., and Nortier, J.L. 2003. Aristolochic acid nephropathy after Chinese herb remedies. In Clinical Nephrotoxins, 2nd edition (M.E. De Broe, G.A. Porter, W.M. Bennett, and G.A. Verpooten, eds.) pp. 579‐586. Kluwer Academic Publishers, The Netherlands.
  Wilfinger, W.W., Mackey, K., and Chomczynski, P. 1997. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. BioTechniques 22:474‐476, 478‐481.
  Wolf, S.M. and Vouros, P. 1994. Application of capillary liquid chromatography coupled with tandem mass spectrometric methods to the rapid screening of adducts formed by the reaction of N‐acetoxy‐N‐acetyl‐2‐aminofluorene with calf thymus DNA. Chem. Res. Toxicol. 7:82‐88. doi: 10.1021/tx00037a013.
  Yin, R.C., Liu, S.Q., Zhao, C., Lu, M.L., Tang, M.S., and Wang, H.L. 2013. An ammonium bicarbonate‐enhanced stable isotope dilution UHPLC‐MS/MS method for sensitive and accurate quantification of acrolein‐DNA adducts in human leukocytes. Anal. Chem. 85:3190‐3197. doi: 10.1021/ac3034695.
  Yun, B.H., Rosenquist, T.A., Sidorenko, V., Iden, C.R., Chen, C.H., Pu, Y.S., Bonala, R., Johnson, F., Dickman, K.G., Grollman, A.P., and Turesky, R.J. 2012. Biomonitoring of aristolactam‐DNA adducts in human tissues using ultra‐performance liquid chromatography/ion‐trap mass spectrometry. Chem. Res. Toxicol. 25:1119‐1131. doi: 10.1021/tx3000889.
  Yun, B.H., Rosenquist, T.A., Nikolic, J., Dragicevic, D., Tomic, K., Jelakovic, B., Dickman, K.G., Grollman, A.P., and Turesky, R.J. 2013. Human formalin‐fixed paraffin‐embedded tissues: An untapped specimen for biomonitoring of carcinogen DNA adducts by mass spectrometry. Anal. Chem. 85:4251‐4258. doi: 10.1021/ac400612x.
  Yun, B.H., Yao, L., Jelakovic, B., Nikolic, J., Dickman, K.G., Grollman, A.P., Rosenquist, T.A., and Turesky, R.J. 2014. Formalin‐fixed paraffin‐embedded tissue as a source for quantitation of carcinogen DNA adducts: Aristolochic acid as a prototype carcinogen. Carcinogenesis 35:2055‐2061. doi: 10.1093/carcin/bgu101.
  Yun, B.H., Sidorenko, V.S., Rosenquist, T.A., Dickman, K.G., Grollman, A.P., and Turesky, R.J. 2015. New approaches for biomonitoring exposure to the human carcinogen aristolochic acid. Toxicol. Res. (Camb) 4:763‐776. doi: 10.1039/C5TX00052A.
  Zahid, M., Goldner, W., Beseler, C.L., Rogan, E.G., and Cavalieri, E.L. 2013. Unbalanced estrogen metabolism in thyroid cancer. Int. J. Cancer 133:2642‐2649. doi: 10.1002/ijc.28275.
  Zahid, M., Beseler, C.L., Hall, J.B., LeVan, T., Cavalieri, E.L., and Rogan, E.G. 2014. Unbalanced estrogen metabolism in ovarian cancer. Int. J. Cancer 134:2414‐2423. doi: 10.1002/ijc.28565.
  Zhang, Q., Aft, R.L., and Gross, M.L. 2008. Estrogen carcinogenesis: Specific identification of estrogen‐modified nucleobase in breast tissue from women. Chem. Res. Toxicol. 21:1509‐1513. doi: 10.1021/tx8001737.
  Zhu, J., Chang, P., Bondy, M.L., Sahin, A.A., Singletary, S.E., Takahashi, S., Shirai, T., and Li, D. 2003. Detection of 2‐amino‐1‐methyl‐6‐phenylimidazo[4,5‐b]‐pyridine‐DNA adducts in normal breast tissues and risk of breast cancer. Cancer Epidemiol. Biomarkers Prev. 12:830‐837.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library