Rolling Circle Amplification with Chemically Modified Nucleoside Triphosphates

Marcel Hollenstein1, Masad J. Damha2

1 Department of Structural Biology and Chemistry, Pasteur Institute, Paris, 2 Department of Chemistry, McGill University, Montreal, Quebec
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 7.26
DOI:  10.1002/cpnc.17
Online Posting Date:  December, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Modified nucleoside triphosphates (dN*TPs) represent facile and versatile precursors for the introduction of chemical diversity into nucleic acids. While dN*TPs have been utilized in a plethora of practical applications, very little attention has been devoted to the assessment of their compatibility with isothermal amplification strategies. In this context, rolling circle amplification (RCA) is a wide‐spread enzymatic replication method in which small single‐stranded DNA (ssDNA) circles serve as templates in primer extension reactions yielding very long, ssDNA products. RCA is a pivotal tool for the generation of biosensor and diagnostic devices and is currently evaluated for its usefulness to create novel drug delivery systems. This unit describes the experimental procedures for the synthesis of modified RCA products using dN*TPs bearing chemical alterations at any possible location of the nucleosidic scaffold. Two ligation methods are presented for the generation of the DNA nanocircles that serve as templates for RCA, followed by a description of the RCA method itself and an assessment of the nuclease resistance of the ensuing products. © 2016 by John Wiley & Sons, Inc.

Keywords: rolling circle amplification; nucleoside triphosphates; polymerases; modified DNA; drug delivery systems

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Preparation of DNA Nanocircles via Standard Ligation
  • Alternate Protocol 1: Preparation of DNA Nanocircles via CircLigase Ligation
  • Support Protocol 1: Exonuclease Treatment of the Circular Templates
  • Basic Protocol 2: Rolling Circle Amplification with Modified Nucleoside Triphosphates
  • Support Protocol 2: Nuclease Resistance
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of DNA Nanocircles via Standard Ligation

  Materials
  • 40% acrylamide/bis‐acrylamide solution (19:1, w/w, electrophoresis purity reagent; Serva Electrophoresis)
  • 10% (w/v) ammonium persulfate (APS) solution
  • BSA (Promega)
  • Bromophenol blue
  • EDTA
  • Ethanol (EtOH)
  • Formamide
  • Elution solution (1 mM in triethylamine [NEt 3], 1 wt. % LiClO 4, pH 8: Dissolve 1 g LiClO 4 [Sigma‐Aldrich] in 50 mL autoclaved Milli‐Q water; add 13.9 µL NEt 3 and adjust pH to 8 with HCl or NaOH; make up solution to 100 mL final volume with autoclaved Milli‐Q water.)
  • TEMED
  • 10× TBE buffer (Sigma‐Aldrich or preparation by standard recipe; see appendix 2A)
  • T4 DNA ligase (Promega)
  • 10× T4 DNA ligase buffer (300 mM Tris·Cl, pH 7.8; 100 mM MgCl 2; 100 mM DTT; and 10 mM ATP)
  • Sephadex G10 (Sigma‐Aldrich)
  • Xylene cyanol FF
  • 5′‐Phosphate‐CTTGGTCTACTGGAG‐N 20‐CTACGGATTGC 1 (DNA template, see Strategic Planning; Microsynth)
  • 5′‐TAGACCAAGGCAATCCGTA (splint oligonucleotide, see Strategic Planning; Microsynth)
  • Urea (Apollo Scientific)
  • Centrifuge
  • Comb (8 wells)
  • Gel plates (20 × 20 cm)
  • Handheld UV lamp (254 nm)
  • Heating block
  • PAGE electrophoresis apparatus
  • 50‐mL plastic syringe
  • Power supply
  • 1.5‐mL screw‐top vials
  • Spacers (1 mm thick)
  • ThermoMixer
  • UV‐active thin‐layer chromatography plate (0.25 mm, UV 254; Macherey‐Nagel)
  • UV/vis spectrophotometer
  • Vacuum concentrator
  • Vortex mixing device

Alternate Protocol 1: Preparation of DNA Nanocircles via CircLigase Ligation

  Materials
  • γ‐32P‐ATP (Hartmann Analytic)
  • Circular ssDNA templates (see Basic Protocols 1 and protocol 2Alternate Protocol)
  • DNA primers:
    • 5′‐TAGACCAAGGCAATCCGTA 3 (for circular template 1)
    • 5′‐CTAACCCTAACCCTAACC 4 (for circular templates 2 to 4)
  • Modified dNTPs:
    • 1 to 3 (base‐modified triphosphates; synthesized according to Hollenstein, )
    • 2′‐Deoxy‐2′‐fluoro‐β‐D‐arabinonucleosides (FANA) 5 (sugar‐modified triphosphates; prepared according to Peng and Damha, )
    • 4 (base‐modified triphosphate; TriLink BioTechnologies, cat. no. N‐2011)
    • 6 (sugar‐modified triphosphates; TriLink BioTechnologies, cat. nos. N‐1007 [for 2′‐F‐dATP]; N‐1008 [for 2′‐F‐dCTP]; N‐1055 [for 2′‐F‐dTTP])
    • 7 (phosphate modified; TriLink BioTechnologies, cat. nos. N‐8001 [for 1‐thio‐dATP]; N‐8002 [for 1‐thio‐dCTP]; N‐8004 [for 1‐thio‐dTTP])
  • N m DNA polymerase (New England Biolabs)
  • 10× Thermopol buffer
  • T4 PNK (Thermo Fisher Scientific)
  • 10× T4 PNK buffer (forward reactions; 500 mM Tris·Cl, pH 7.6; 100 mM MgCl 2; 50 mM DTT; 1  mM spermidine)
  • Stop solution (see protocol 1)
  • Urea
  • 10× TBE
  • 10% (w/v) ammonium persulfate (APS) solution
  • TEMED
  • 20% acrylamide solution (see protocol 1, step 10)
  • Amersham Hyperscreen intensifying screen (35 × 43 cm, GE Healthcare Life Sciences)
  • Autoradiography cassette (35 × 43 cm, GE Healthcare Life Sciences)
  • Gel plates (33 × 42 cm; CBS Scientific)
  • ImageQuant software (GE Healthcare)
  • Spacers (0.4 mm thick; CBS Scientific) and combs (16 wells; CBS Scientific)
  • Storm 820 phosphorimager (GE Healthcare)
  • ThermoMixer
  • Sephadex G10 spin column (see protocol 1)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aldaye, F.A., Palmer, A.L., and Sleiman, H.F. 2008. Assembling materials with DNA as the guide. Science 321:1795‐1799. doi: 10.1126/science.1154533.
  Ali, M.M., Li, F., Zhang, Z., Zhang, K., Kang, D.K., Ankrum, J.A., Le, X.C., and Zhao, W. 2014. Rolling circle amplification: A versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 43:3324‐3341. doi: 10.1039/c3cs60439j.
  Baccaro, A. and Marx, A. 2010. Enzymatic Synthesis of organic‐polymer‐grafted DNA. Chem. Eur. J. 16:218‐226. doi: 10.1002/chem.200902296.
  Blondal, T., Thorisdottir, A., Unnsteinsdottir, U., Hjorleifsdottir, S., Ævarsson, A., Ernstsson, S., Fridjonsson, O.H., Skirnisdottir, S., Wheat, J.O., Hermannsdottir, A.G., Sigurdsson, S.T., Hreggvidsson, G.O., Smith, A.V., and Kristjansson, J.K. 2005. Isolation and characterization of a thermostable RNA ligase 1 from a Thermus scotoductus bacteriophage TS2126 with good single‐stranded DNA ligation properties. Nucleic Acids Res. 33:135‐142. doi: 10.1093/nar/gki149.
  Cavalier, T. 1974. Palindromic base sequences and replication of eukaryote chromosome ends. Nature 250:467‐470. doi: 10.1038/250467a0.
  Daubendiek, S.L., Ryan, K., and Kool, E.T. 1995. Rolling‐circle RNA synthesis: Circular oligonucleotides as efficient substrates for T7 RNA polymerase. J. Am. Chem. Soc. 117:7818‐7819. doi: 10.1021/ja00134a032.
  Diafa, S. and Hollenstein, M. 2015. Generation of aptamers with an expanded chemical repertoire. Molecules 20:16643‐16671. doi: 10.3390/molecules200916643.
  Dunn, M.R. and Chaput, J.C. 2014. An in vitro selection protocol for threose nucleic acid (TNA) using DNA display. Curr. Protoc. Nucleic Acid Chem. 57:9.8.1‐9.8.19. doi: 10.1002/0471142700.nc0908s57.
  El‐Sagheer, A.H., Sanzone, A.P., Gao, R., Tavassoli, A., and Brown, T. 2011. Biocompatible artificial DNA linker that is read through by DNA polymerases and is functional in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 108:11338‐11343. doi: 10.1073/pnas.1101519108.
  Etokebe, G.E. and Spurkland, A. 2000. Method for avoiding PCR‐inhibiting contaminants when eluting DNA from polyacrylamide gels. BioTechniques 29:694‐696.
  Fire, A. and Xu, S.‐Q. 1995. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. U.S.A. 92:4641‐4645. doi: 10.1073/pnas.92.10.4641.
  Hartig, J.S., Fernandez‐Lopez, S., and Kool, E.T. 2005. Guanine‐rich DNA nanocircles for the synthesis and characterization of long cytosine‐rich telomeric DNAs. ChemBioChem. 6:1458‐1462. doi: 10.1002/cbic.200500015.
  Hocek, M. 2014. Synthesis of base‐modified 2′‐deoxyribonucleoside triphosphates and their use in enzymatic synthesis of modified DNA for applications in bioanalysis and chemical biology. J. Org. Chem. 79:9914‐9921. doi: 10.1021/jo5020799.
  Hocek, M. and Fojta, M. 2011. Nucleobase modification as redox DNA labelling for electrochemical detection. Chem. Soc. Rev. 40:5802‐5814. doi: 10.1039/c1cs15049a.
  Hollenstein, M. 2012. Nucleoside triphosphates—building blocks for the modification of nucleic acids. Molecules 17:13569‐13591. doi: 10.3390/molecules171113569.
  Hollenstein, M. 2013. Deoxynucleoside triphosphates bearing histamine, carboxylic acid, and hydroxyl residues—synthesis and biochemical characterization. Org. Biomol. Chem. 11:5162‐5172. doi: 10.1039/c3ob40842f.
  Hollenstein, M. 2015. Generation of long, fully modified, and serum‐resistant oligonucleotides by rolling circle amplification. Org. Biomol. Chem. 13:9820‐9824. doi: 10.1039/C5OB01540E.
  Hottin, A. and Marx, A. 2016. Structural insights into the processing of nucleobase‐modified nucleotides by DNA polymerases. Acc. Chem. Res. 49:418‐427. doi: 10.1021/acs.accounts.5b00544.
  Kim, J.H., Jang, M., Kim, Y.J., and Ahn, H.J. 2015. Design and application of rolling circle amplification for a tumor‐specific drug carrier. J. Med. Chem. 58:7863‐7873. doi: 10.1021/acs.jmedchem.5b01126.
  Kim, M.G., Park, J.Y., Shim, G., Choi, H.G., and Oh, Y.K. 2015. Biomimetic DNA nanoballs for oligonucleotide delivery. Biomaterials 62:155‐163. doi: 10.1016/j.biomaterials.2015.04.037.
  Kuhn, H. and Frank‐Kamenetskii, M.D. 2005. Template‐independent ligation of single‐stranded DNA by T4 DNA ligase. FEBS J. 272:5991‐6000. doi: 10.1111/j.1742‐4658.2005.04954.x.
  Lee, J.B., Peng, S., Yang, D., Roh, Y.H., Funabashi, H., Park, N., Rice, E.J., Chen, L., Long, R., Wu, M., and Luo, D. 2012. A mechanical metamaterial made from a DNA hydrogel. Nat. Nanotechnol. 7:816‐820. doi: 10.1038/nnano.2012.211.
  Lindström, U.M. and Kool, E.T. 2002. An orthogonal oligonucleotide protecting group strategy that enables assembly of repetitive or highly structured DNAs. Nucleic Acids Res. 30:e101. doi: 10.1093/nar/gnf100.
  Liu, D., Daubendiek, S.L., Zillman, M.A., Ryan, K., and Kool, E.T. 1996. Rolling circle DNA synthesis: Small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118:1587‐1594. doi: 10.1021/ja952786k.
  Olszewska, A., Dadova, J., Mackova, M., and Hocek, M. 2015. Cleavage of DNA containing 5‐fluorocytosine or 5‐fluorouracil by type II restriction endonucleases. Bioorg. Med. Chem. 23:6885‐6890. doi: 10.1016/j.bmc.2015.09.051.
  Peng, C.G. and Damha, M.J. 2007. Polymerase‐directed synthesis of 2′‐deoxy‐2′‐fluoro‐β‐D‐arabinonucleic acids. J. Am. Chem. Soc. 129:5310‐5311. doi: 10.1021/ja069100g.
  Peng, C.G. and Damha, M.J. 2008. Probing DNA polymerase activity with stereoisomeric 2′‐fluoro‐β‐D‐arabinose (2′F‐araNTPs) and 2′‐fluoro‐β‐D‐ribose (2′F‐rNTPs) nucleoside 5′‐triphosphates. Can. J. Chem. 86:881‐891. doi: 10.1139/v08‐089.
  Pinheiro, V.B., Taylor, A.I., Cozens, C., Abramov, M., Renders, M., Zhang, S., Chaput, J.C., Wengel, J., Peak‐Chew, S.‐Y., McLaughlin, S.H., Herdewijn, P., and Holliger, P. 2012. Synthetic genetic polymers capable of heredity and evolution. Science 336:341‐344. doi: 10.1126/science.1217622.
  Russell, C., Roy, S., Ganguly, S., Qian, X.Y., Caruthers, M.H., and Nilsson, M. 2015. Formation of silver nanostructures by rolling circle amplification using boranephosphonate‐modified nucleotides. Anal. Chem. 87:6660‐6666. doi: 10.1021/acs.analchem.5b00783.
  Sarac, I. and Meier, C. 2016. Solid‐phase synthesis of DNA and RNA 5′‐O‐triphosphates using cycloSal chemistry. Curr. Protoc. Nucleic Acid Chem. 64:4.67.1‐4.67.13. doi: 10.1002/0471142700.nc0467s64.
  Smolina, I.V., Cherny, D.I., Nietupski, R.M., Beals, T., Smith, J.H., Lane, D.J., Broude, N.E., and Demidov, V.V. 2005. High‐density fluorescently labeled rolling‐circle amplicons for DNA diagnostics. Anal. Biochem. 347:152‐155. doi: 10.1016/j.ab.2005.06.002.
  Tate, C.M., Nuñez, A.N., Goldstein, C.A., Gomes, I., Robertson, J.M., Kavlick, M.F., and Budowle, B. 2012. Evaluation of circular DNA substrates for whole genome amplification prior to forensic analysis. Forensic Sci. Int.‐Genet. 6:185‐190. doi: 10.1016/j.fsigen.2011.04.011.
  Taylor, A.I., Pinheiro, V.B., Smola, M.J., Morgunov, A.S., Peak‐Chew, S., Cozens, C., Weeks, K.M., Herdewijn, P., and Holliger, P. 2015. Catalysts from synthetic genetic polymers. Nature 518:427‐430. doi: 10.1038/nature13982.
  Verga, D., Welter, M., Steck, A.L., and Marx, A. 2015. DNA polymerase‐catalyzed incorporation of nucleotides modified with a G‐quadruplex‐derived DNAzyme. Chem. Commun. 51:7379‐7381. doi: 10.1039/C5CC01387A.
  Yao, J., Flack, K., Ding, L., and Zhong, W. 2013. Tagging the rolling circle products with nanocrystal clusters for cascade signal increase in the detection of miRNA. Analyst 138:3121‐3125. doi: 10.1039/c3an00398a.
  Yata, T., Takahashi, Y., Tan, M., Hidaka, K., Sugiyama, H., Endo, M., Takakura, Y., and Nishikawa, M. 2015. Efficient amplification of self‐gelling polypod‐like structured DNA by rolling circle amplification and enzymatic digestion. Sci. Rep. 5:14979. doi: 10.1038/srep14979.
  Zhang, Z.Q., Ali, M.M., Eckert, M.A., Kang, D.K., Chen, Y.Y., Sender, L.S., Fruman, D.A., and Zhao, W.A. 2013. A polyvalent aptamer system for targeted drug delivery. Biomaterials 34:9728‐9735. doi: 10.1016/j.biomaterials.2013.08.079.
  Zhao, W., Ali, M.M., Brook, M.A., and Li, Y. 2008. Rolling circle amplification: Applications in nanotechnology and biodetection with functional nucleic acids. Angew. Chem. Int. Ed. 47:6330‐6337. doi: 10.1002/anie.200705982.
  Zhu, G., Hu, R., Zhao, Z., Chen, Z., Zhang, X., and Tan, W. 2013. Noncanonical self‐assembly of multifunctional DNA nanoflowers for biomedical applications. J. Am. Chem. Soc. 135:16438‐16445. doi: 10.1021/ja406115e.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library