Deformability Calculation for Estimation of the Relative Stability of Chemically Modified RNA Duplexes

Yoshiaki Masaki1, Mitsuo Sekine1, Kohji Seio1

1 Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 7.27
DOI:  10.1002/cpnc.25
Online Posting Date:  March, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Chemical modification of RNA duplexes alters their stability. We have attempted to develop a computational approach to estimate the thermal stability of chemically modified duplexes. These studies revealed that the deformability of chemically modified RNA duplexes, calculated from molecular dynamics simulations, could be used as a good indicator for estimating the effect of chemical modification on duplex thermal stability. This unit describes how deformability calculation can be applied to estimate the relative stability of chemically modified RNA duplexes. © 2017 by John Wiley & Sons, Inc.

Keywords: deformability; nucleic acid; duplex thermal stability; chemical modification; RNA

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Anselmi, C., De Santis, R., Paparcone, R., Savino, M., and Scipioni, A. 2002. From the sequence to the superstructural properties of DNAs. Biophys. Chem. 95:23‐47. doi: 10.1016/S0301‐4622(01)00246‐0.
  Bayly, C.I., Cieplak, P., Cornell, W.D., and Kollman, P.A. 1993. A well‐behaved electrostatic potential based method using charge restraints for deriving atomic charges—The Resp model. J. Phys. Chem. 97:10269‐10280. doi: 10.1021/j100142a004.
  Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Di Nola, A., and Haak, J.R. 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81:3684. doi: 10.1063/1.448118.
  Cieplak, P., Cornell, W.D., Bayly, C., and Kollman, P.A. 1995. Application of the multimolecule and multiconformational Resp methodology to biopolymers: Charge derivation for DNA, RNA, and proteins. J. Comput. Chem. 16:1357‐1377. doi: 10.1002/jcc.540161106.
  Darden, T., York, D., and Pedersen, L. 1993. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98:10089. doi: 10.1063/1.464397.
  Dixit, S.B., Beveridge, D.L., Case, D.A., Cheatham, T.E., 3rd, Giudice, E., Lankas, F., Lavery, R., Maddocks, J.H., Osman, R., Sklenar, H., Thayer, K.M., and Varnai, P. 2005. Molecular dynamics simulations of the 136 unique tetranucleotide sequences of DNA oligonucleotides. II: Sequence context effects on the dynamical structures of the 10 unique dinucleotide steps. Biophys. J. 89:3721‐3740. doi: 10.1529/biophysj.105.067397.
  Dupradeau F.Y., Pigache, A., Zaffran, T., Savineau, C., Lelong, R., Grivel, N., Lelong, D., Rosanski, W., and Cieplak, P. 2010. The R.E.D. tools: Advances in RESP and ESP charge derivation and force field library building. Phys. Chem. Chem. Phys. 12:7821‐7839. doi: 10.1039/c0cp00111b.
  Galindo‐Murillo, R., Bergonzo, C., and Cheatham, T. E. 2014. Molecular modeling of nucleic acid structure: Setup and analysis. Curr. Protoc. Nucl. Acid Chem. 56:7.10.1‐7.10.21. doi: 10.1002/0471142700.nc0710s06.
  Kool, E.T. 1997. Preorganization of DNA: Design principles for improving nucleic acid recognition by synthetic oligonucleotides. Chem. Rev. 97:1473‐1488. doi: 10.1021/cr9603791.
  Lankas, F. 2006. Sequence‐dependent harmonic deformability of nucleic acids inferred from atomistic molecular dynamics. In Computational Studies of RNA and DNA (J. Sponer and F. Lankas, eds.) pp. 559‐577. Springer, Dordrecht, The Netherlands.
  Lankas, F., Sponer, J., Langowski, J., and Cheatham, T.E., 3rd. 2003. DNA base pair step deformability inferred from molecular dynamics simulations. Biophys. J. 85:2872‐2883. doi: 10.1016/S0006‐3495(03)74710‐9.
  Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D., and Zakrzewska, K. 2009. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37:5917‐5929. doi: 10.1093/nar/gkp608.
  Lu, X.J. and Olson, W.K. 2003. 3DNA: A software package for the analysis, rebuilding and visualization of three‐dimensional nucleic acid structures. Nucleic Acids Res. 31:5108‐5121. doi: 10.1093/nar/gkg680.
  Masaki, Y., Miyasaka, R., Ohkubo, A., Seio, K., and Sekine, M. 2010. Linear relationship between deformability and thermal stability of 2'‐O‐modified RNA hetero duplexes. J. Phys. Chem. B 114:2517‐2524. doi: 10.1021/jp909851j.
  Masaki, Y., Miyasaka, R., Hirai, K., Tsunoda, H., Ohkubo, A., Seio, K., and Sekine, M. 2012. Prediction of the stability of modified RNA duplexes based on deformability analysis: Oligoribonucleotide derivatives modified with 2'‐O‐cyanoethyl‐5‐propynyl‐2‐thiouridine as a promising component. Chem. Commun. 48:7313‐7315. doi: 10.1039/c2cc33409g.
  Matveeva, O.V., Mathews, D.H., Tsodikov, A.D., Shabalina, S.A., Gesteland, R.F., Atkins, J.F., and Freier, S.M. 2003. Thermodynamic criteria for high hit rate antisense oligonucleotide design. Nucleic Acids Res. 31:4989‐4994. doi: 10.1093/nar/gkg710.
  Olson, W.K., Gorin, A.A., Lu, X.J., Hock, L.M., and Zhurkin, V.B. 1998. DNA sequence‐dependent deformability deduced from protein‐DNA crystal complexes. Proc. Natl. Acad. Sci. U. S. A. 95:11163‐11168. doi: 10.1073/pnas.95.19.11163.
  Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. 1977. Numerical‐integration of Cartesian equations of motion of a system with constraints—Molecular‐dynamics of N‐alkanes. J. Comput. Phys. 23:327‐341. doi: 10.1016/0021‐9991(77)90098‐5.
  Saneyoshi, H., Seio, K., and Sekine, M. 2005. A general method for the synthesis of 2'‐O‐cyanoethylated oligoribonucleotides having promising hybridization affinity for DNA and RNA and enhanced nuclease resistance. J. Org. Chem. 70:10453‐10460. doi: 10.1021/jo051741r.
  Stanton, R., Sciabola, S., Salatto, C., Weng, Y., Moshinsky, D., Little, J., Walters, E., Kreeger, J., Di Mattia, D., Chen, T., Clark, T., Liu, M., Qian, J., Roy, M., and Dullea, R. 2012. Chemical modification study of antisense gapmers. Nucleic Acid Ther. 22:344‐359. doi: 10.1089/nat.2012.0366.
  Ui‐Tei, K., Naito, Y., Nishi, K., Juni, A., and Saigo, K. 2008. Thermodynamic stability and Watson‐Crick base pairing in the seed duplex are major determinants of the efficiency of the siRNA‐based off‐target effect. Nucleic Acids Res. 36:7100‐7109. doi: 10.1093/nar/gkn902.
  Vanquelef, E., Simon, S., Marquant, G., Garcia, E., Klimerak, G., Delepine, J.C., Cieplak, P., and Dupradeau, F.Y. 2011. R.E.D. Server: A web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res. 39:W511‐517. doi: 10.1093/nar/gkr288.
  Yamamoto, T., Fujii, N., Yasuhara, H., Wada, S., Wada, F., Shigesada, N., Harada‐Shiba, M., and Obika, S. 2014. Evaluation of multiple‐turnover capability of locked nucleic acid antisense oligonucleotides in cell‐free RNase H‐mediated antisense reaction and in mice. Nucleic Acid Ther. 24:283‐290. doi: 10.1089/nat.2013.0470.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library