In Vitro Selection Using Modified or Unnatural Nucleotides

Gwendolyn M. Stovall1, Robert S. Bedenbaugh1, Shruti Singh1, Adam J. Meyer1, Paul J. Hatala2, Andrew D. Ellington1, Bradley Hall2

1 The University of Texas at Austin, Austin, Texas, 2 Altermune Technologies LLC, Austin, Texas
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 9.6
DOI:  10.1002/0471142700.nc0906s56
Online Posting Date:  March, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Incorporation of modified nucleotides into in vitro RNA or DNA selections offers many potential advantages, such as the increased stability of selected nucleic acids against nuclease degradation, improved affinities, expanded chemical functionality, and increased library diversity. This unit provides useful information and protocols for in vitro selection using modified nucleotides. It includes a discussion of when to use modified nucleotides; protocols for evaluating and optimizing transcription reactions, as well as confirming the incorporation of the modified nucleotides; protocols for evaluating modified nucleotide transcripts as template in reverse transcription reactions; protocols for the evaluation of the fidelity of modified nucleotides in the replication and the regeneration of the pool; and a protocol to compare modified nucleotide pools and selection conditions. Curr. Protoc. Nucleic Acid Chem. 56:9.6.1‐9.6.33. © 2014 by John Wiley & Sons, Inc.

Keywords: in vitro selection; aptamer; ribozymes; deoxyribozymes; modified nucleotides; unnatural nucleotides

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Determination of Suitability of Modified Nucleotides for In Vitro Selection
  • Basic Protocol 1: Evaluation and Optimization of Transcription with a Modified Nucleotide
  • Basic Protocol 2: Confirmation of the Presence of Modified Nucleotides
  • Basic Protocol 3: Evaluation of Modified RNA as a Template for Reverse Transcriptase
  • Basic Protocol 4: Determination of the Fidelity of Replication
  • Determination of Modified Pool Most Suitable for In Vitro Aptamer Selection
  • Basic Protocol 5: Comparing Modified Nucleotide Pools and Selection Conditions
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Evaluation and Optimization of Transcription with a Modified Nucleotide

  Materials
  • AmpliScribe T7 high‐yield transcription kit (Epicentre) containing:
    • 10× transcription (TNX) buffer
    • T7 enzyme solution
    • 100 mM ATP, CTP, GTP, and UTP solutions
    • 10× reaction mix
    • 100 mM dithiothreitol (DTT)
    • T7 RNA polymerase
  • DuraScribe T7 transcription kit (Epicentre) for modified NTP incorporation, kit includes:
    • DuraScribe T7 enzyme solution
    • 50 mM ATP and GTP solutions
    • 50 mM 2′‐deoxy‐2′‐fluoro‐CTP and 2′‐deoxy‐2′‐fluoro‐UTP solutions
    • 10× reaction mix
    • 100 mM dithiothreitol (DTT)
  • 100 mM modified nucleotide
  • 500 ng DNA clone of known sequence composition (dsDNA containing a T7 promoter)
  • 3000 Ci/mmol α‐32P‐labeled ATP (e.g., Perkin Elmer)
  • Nuclease‐free water
  • 2× denaturing stop dye (see recipe)
  • 10% (w/v) denaturing polyacrylamide gel (see recipe in appendix 3B), 0.8‐mm thick
  • 500 ng purified DNA pool or randomized clone per reaction (dsDNA containing a T7 promoter) (unit 9.2)
  • Thermal cycler or 37°C to 42°C and 70°C water baths or heating blocks
  • Gel blotting paper (Bio‐Rad)
  • Plastic wrap
  • Gel dryer with vacuum (e.g., Bio‐Rad)
  • Phosphorimager screen
  • Phosphorimager and image analysis software (e.g., GE Healthcare Life Sciences, ImageQuant)
  • Additional reagents and equipment for denaturing polyacrylamide gel electrophoresis (PAGE; appendix 3B)

Basic Protocol 2: Confirmation of the Presence of Modified Nucleotides

  Materials
  • Transcribed RNA pools, modified and unmodified (see protocol 1 without radiolabeled ATP)
  • Nuclease P1 digestion mix (see recipe)
  • Alkaline phosphatase reaction mix (see recipe)
  • HPLC mobile phase solution: 5% (v/v) methanol in 0.1 M sodium phosphate, pH 6.0 ( appendix 2A)
  • Thermal cycler or 37°C and 50°C water baths
  • HPLC with reversed‐phase C18 column (5 µm, 250 × 4.5–mm; Waters.) and UV detector

Basic Protocol 3: Evaluation of Modified RNA as a Template for Reverse Transcriptase

  Materials
  • Transcribed RNA pools, modified and unmodified (prepared as in protocol 1 but without radiolabeled ATP)
  • 100 µM reverse (3′‐end) primer
  • 3000 Ci/mmol α‐32P‐labeled dATP (e.g., Perkin Elmer)
  • 10 mM dNTP mix (containing 10 mM each of dATP, dCTP, dGTP, and dTTP)
  • ThermoScript reverse transcriptase kit (Invitrogen, Life Technologies) containing:
    • 5× buffer
    • 100 mM DTT
    • RNase OUT (ribonuclease inhibitor)
    • Reverse transcriptase (RT) enzyme
  • 2× denaturing stop dye (see recipe)
  • 10% (w/v) denaturing polyacrylamide gel (see recipe in appendix 3B), 0.8‐mm thick
  • Thermal cycler
  • Gel blotting paper (Bio‐Rad)
  • Plastic wrap
  • Gel dryer with heat and vacuum (e.g., Bio‐Rad)
  • Phosphorimager screen
  • Phosphorimager
  • Image analysis software (e.g., GE Healthcare Life Sciences ImageQuant)
  • Additional reagents and equipment for denaturing polyacrylamide gel electrophoresis (PAGE; appendix 3B)

Basic Protocol 4: Determination of the Fidelity of Replication

  Materials
  • 32P‐end‐labeled nucleic acid pools with specific modifications (modified pool in one tube, unmodified in another; refer to unit 9.5, Support Protocol 1, for the radiolabeling protocol)
  • Binding buffer: this buffer should promote binding and be specific to the aptamer application; common examples are phosphate‐buffered saline (PBS) and PCR buffer, e.g., 10 mM Tris·Cl, pH 8.4, 50 mM KCl, and 1.5 mM MgCl 2 (for more discussion, see unit 9.5)
  • Target molecule (range of concentrations from 1 × 10−7 M to 1 × 10−12 M)
  • Methanol
  • 0.5 M potassium hydroxide (KOH)
  • Thermal cycler or 37°C and 65°C water baths or heating blocks
  • Minifold I dot blot system, 96‐well plate vacuum manifold (e.g., Whatman)
  • Nylon membranes (e.g., Hybond N+ nylon sheets)
  • 0.45‐µm nitrocellulose transfer and immobilization membrane (e.g., Protran BA‐83, Whatman)
  • Vacuum pump or water aspirator
  • 80°C oven
  • Phosphorimager screen
  • Phosphorimager and image analysis software (e.g., GE Healthcare Life Sciences ImageQuant)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Bartel, D.P. and Szostak, J.W. 1993. Isolation of new ribozymes from a large pool of random sequences. Science 261:1411‐1418.
  Battersby, T.R., Ang, D.N., Burgstaller, P., Jurczyk, S.C., Bowser, M.T., Buchanan, D.D., Kennedy, R.T., and Benner, S.A. 1999. Quantitative analysis of receptors for adenosine nucleotides obtained via in vitro selection from a library incorporating a cationic nucleotide analog. J. Am. Chem. Soc. 121:9781‐9789.
  Beaudry, A., DeFoe, J., Zinnen, S., Burgin, A., and Beigelman, L. 2000. In vitro selection of a novel nuclease‐resistant RNA phosphodiesterase. Chem. Biol. 7:323‐334.
  Bell, N.M. and Micklefield, J. 2009. Chemical modification of oligonucleotides for therapeutic, bioanalytical and other applications. Chembiochem 10:2691‐2703.
  Brieba, L.G. and Sousa, R. 2000. Roles of histidine 784 and tyrosine 639 in ribose discrimination by T7 RNA polymerase. Biochemistry 39:919‐923.
  Brody, E.N., Willis, N.C., Smith, J.D., Jayasena, S., Zichi, D., and Gold, L. 1999. The use of aptamers in large arrays for molecular diagnostics. J. Mol. Diagn. 4:381‐388.
  Bugaut, A., Toulmé, J.J., and Rayner, B. 2004. Use of dynamic combinatorial chemistry for the identification of covalently appended residues that stabilize oligonucleotide complexes. Angew. Chem. Int. Ed. Engl. 43:3144‐3147.
  Bugaut, A., Bathany, K., Schmitter, J.M., and Rayner, B. 2005. Target‐induced selection of ligands from a dynamic combinatorial library of mono‐ and bi‐conjugated oligonucleotides. Tetrahedron Lett. 46:687‐690.
  Bugaut, A., Toulmé, J.J., and Rayner, B. 2006. SELEX and dynamic combinatorial chemistry interplay for the selection of conjugated RNA aptamers. Org. Biomol. Chem. 4:4082‐4088.
  Burmeister, P.E., Lewis, S.D., Silva, R.F., Preiss, J.R., Horwitz, L.R., Pendergrast, P.S., McCauley, T.G., Kurz, J.C., Epstein, D.M., Wilson, C., and Keefe, A.D. 2005. Direct in vitro selection of a 2′‐O‐methyl aptamer to VEGF. Chem. Biol. 12:25‐33.
  Burmeister, P.E. Wang, C., Killough, J.R., Lewis, S.D., Horwitz, L.R., Ferguson, A., Thompson, K.M., Pendergrast, P.S., McCauley, T.G., Kurz, M., Diener, J., Cload, S.T., Wilson, C., and Keefe, A.D. 2006. 2′‐Deoxy purine, 2′‐O‐methyl pyrimidine (dRmY) aptamers as candidate therapeutics. Oligonucleotides 16:337‐351.
  Chakravarthy, U., Adamis, A.P., Cunningham, E.T., Goldbaum, M., Guyer, D.R., Katz, B., and Patel, M. 2006. Year 2 efficacy results of 2 randomized controlled clinical trials of pegaptanib for neovascular age‐related macular degeneration. Ophthalmology 113:1‐25.
  Chelliserrykattil, J. and Ellington, A.D. 2004. Evolution of a T7 RNA polymerase variant that transcribes 2′‐O‐methyl RNA. Nat. Biotechnol. 22:1155‐1160.
  Eulberg, D. and Klussman, S. 2003. Spiegelmers: Biostable aptamers. Chembiochem 4:979‐983.
  Faulhammer, D. and Famulok, M. 1997. Characterization and divalent metal‐ion dependence of in vitro selected deoxyribozymes which cleave DNA/RNA chimeric oligonucleotides. J. Mol. Biol. 269:188‐202.
  Geyer, C. R. and Sen, D. 1997. Evidence for the metal‐cofactor independence of an RNA phosphodiester‐cleaving DNA enzyme. Chem. Biol. 4:579‐593.
  Gold, L., Ayer, D., Bertino, J., Bock, C., Bock, A., Brody, E.N., Carter, J., Dalby, A.B., Eaton, B.E., Fitzwater, T., Flather, D., Forbes, A., Foreman, T., Fowler, C., Gawande, B., Goss, M., Gunn, M., Gupta, S., Halladay, D., Heil, J., Heilig, J., Hicke, B., Husar, G., Janjic, N., Jarvis, T., Jennings, S., Katilius, E., Keeney, T.R., Kim, N., Koch, T.H., Kraemer, S., Kroiss, L., Le, N., Levine, D., Lindsey, W., Lollo, B., Mayfield, W., Mehan, M., Mehler, R., Nelson, S.K., Nelson, M., Nieuwlandt, D., Nikrad, M., Ochsner, U., Ostroff, R.M., Otis, M., Parker, T., Pietrasiewicz, S., Resnicow, D.I., Rohloff, J., Sanders, G., Sattin, S., Schneider, D., Singer, B., Stanton, M., Sterkel, A., Stewart, A., Stratford, S., Vaught, J.D., Vrkljan, M., Walker, J.J., Watrobka, M., Waugh, S., Weiss, A., Wilcox, S.K., Wolfson, A., Wolk, S.K., Zhang, C., and Zichi, D. 2010. Aptamer‐based multiplexed proteomic technology for biomarker discovery. PLoS ONE. 5:e15004.
  Golden, M.C., Collins, B.D., Willis, M.C., and Koch, T.H. 2000. Diagnostic potential of photo‐SELEX‐evolved ssDNA aptamers. J. Biotechnol. 81:167‐178.
  Gourlain, T., Sidorov, A., Mignet, N., Thorpe, S.J., Lee, S.E., Grasby, J.A., and Williams, D.M. 2001. Enhancing the catalytic repertoire of nucleic acids. II. Simultaneous incorporation of amino and imidazolyl functionalities by two modified triphosphates during PCR. Nucleic Acids Res. 29:1898‐1905.
  Green, L.S., Jellinek, D., Bell, C., Beebe, L.A., Feistner, B.D., Gill, S.C., Jucker, F.M., and Janjic, N. 1995. Nuclease‐resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem. Biol. 2:683‐695.
  Griffiths, A.D., Potter, B.V., and Eperon, I.C. 1987. Stereospecificity of nucleases towards phosphorothioate‐substituted RNA: Stereochemistry of transcription by T7 RNA polymerase. Nucleic Acids Res. 15:4145‐4162.
  He, W., Elizondo‐Riojas, M.A., Li, X., Lokesh, G.L.R., Somasunderam, A., Thiviyanathan, V., Volk, D.E., Durland, R.H., Englehardt, J., Cavasotto, C.N., and Gorenstein, D.G. 2012. X‐Aptamers: A bead based selection method for random incorporation of druglike moieties onto next‐generation aptamers for enhanced binding. Biochemistry 51:8321‐8323.
  Hollenstein, M., Hipolito, C.J., Lam, C.H., and Perrin, D.M. 2013. Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all‐RNA substrates. ACS Comb. Sci. 15:174‐182.
  Huang, Y., Eckstein, F., Padilla, R., and Sousa, R. 1997. Mechanism of ribose 2′‐group discrimination by an RNA polymerase. Biochemistry 36:8231‐8242.
  Ibach, J., Dietrich, L., Koopmans, K.R., Nöbel, N., Skoupi, M., and Brakmann, S. 2013. Identification of a T7 RNA polymerase variant that permits the enzymatic synthesis of fully 2′‐O‐methyl‐modified RNA. J. Biotechnol. 167:287‐295.
  Jäger, S., Rasched, G., Kornreich‐Leshem, H., Engeser, M., Thum, O., and Famulok, M. 2005. A versatile toolbox for variable DNA functionalization at high density. J. Am. Chem. Soc. 127:15071‐15082.
  Jellinek, D., Green, L.S., Bell, C., Lynott, C.K., Gill, N., Vargeese, C., Kirschenheuter, G., McGee, D.P., Abesinghe, P., Pieken, W.A., Shapiro, R., Rifkin, D.B., Moscatelli, D., and Janjic, N. 1995. Potent 2′‐amino‐2′‐deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 34:11363‐11372.
  Jhaveri, S., Olwin, B., and Ellington, A.D. 1998. In vitro selection of phosphorothiolated aptamers. Bioorg. Med. Chem. Lett. 8:2285‐2290.
  Kasahara, Y., Irisawa, Y., Ozaki, H., Obika, H., and Kuwahara, M. 2013. 2′,4′‐BNA/LNA aptamers: CS‐SELEX using a DNA‐based library of full‐length 2′‐O,4′‐C‐methylene‐bridged/linked bicyclic ribonucleotides. Bioorg. Med. Chem. Lett. 23:1288‐1292.
  Kato, Y., Minakawa, N., Komatsu, Y., Kamiya, H., Ogawa, M., Harashima, H., and Matsuda, A., 2005. New NTP analogs: The synthesis of 4′‐thioUTP and 4′‐thioCTP and their utility for SELEX. Nucleic Acids Res. 33:2942‐2951.
  Keefe, A.D. and Cload, S.T. 2008. SELEX with modified nucleotides. Curr. Opin. Chem. Biol. 12:448‐456.
  Kimoto, M., Yamashige, R., Matsunaga, K., Yokoyama, S., and Hirao, I. 2013. Generation of high‐affinity DNA aptamers using an expanded genetic alphabet. Nat. Biotechnol. 31:453‐457.
  King, D.J., Ventura, D.A., Brasier, A.R., and Gorenstein, D.G. 1998. Novel combinatorial selection of phosphorothioate oligonucleotide aptamers. Biochemistry 37:16489‐16493.
  King, D.J., Bassett, S.E., Li, X., Fennewald, S.A., Herzog, N.A., Luxong, B.A., Shope, R., and Gorenstein, D.G. 2002. Combinatorial selection and binding phosphorothioate aptamers targeting human NF‐kappa B RelA (p65) and p50. Biochemistry. 41:9696‐9706.
  Koizumi, M., Soukup, G.A., Kerr, J.N., and Breaker, R.R. 1999. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nat. Struct. Biol. 6:1062‐1071.
  Kojima, T., Furukawa, K., Maruyama, H., Inoue, N., Tarashima, N., Matsuda, A., and Minakawa, N. 2013. PCR amplification of 4′‐thioDNA using 2′‐deoxy‐4′‐thionucleoside 5′‐triphosphates. ACS Synth. Biol. 2:529‐536.
  Kore, A.R., Vaish, N.K., Morris, J.A., and Eckstein, F. 2000. In vitro evolution of the hammerhead ribozyme to a purine‐specific ribozyme using mutagenic PCR with two nucleotide analogues. J. Mol. Biol. 301:1113‐1121.
  Kostyuk, D.A., Dragan, S.M., Lyakhov, D.L., Rechinsky, V.O., Tunitskaya, V.L., Chernov, B.K., and Kochetkov, S.N. 1995. Mutants of T7 RNA polymerase that are able to synthesize both RNA and DNA. FEBS Lett. 369:165‐168.
  Kubik, M.F., Bell, C., Fitzwater, T., Watson, S.R., and Tasset, D.M. 1997. Isolation and characterization of 2′‐fluoro‐, 2′‐amino‐, and 2′‐fluoro‐/amino‐modified RNA ligands to human IFN‐gamma that inhibit receptor binding. J. Immunol. 159:259‐267.
  Kujau, M.J., Siebert, A., and Wolfl, S. 1997. Design of leader sequences that improve the efficiency of the enzymatic synthesis of 2′‐amino‐pyrimidine RNA for in vitro selection. J. Biochem. Biophys. Methods 35:141‐151.
  Kuwahara, M., Takano, Y., Kasahara, Y., Nara, H., Ozaki, H., Sawai, H., Sugiyama, A., and Obika, S. 2010. Study on suitability of KOD DNA polymerase for enzymatic production of artificial nucleic acids using base/sugar modified nucleoside triphosphates. Molecules 15:8229‐8240.
  Latham, J.A., Johnson, R., and Toole, J.J. 1994. The application of a modified nucleotide in aptamer selection: Novel thrombin aptamers containing 5‐(1‐pentynyl)‐2′‐deoxyuridine. Nucleic Acids Res. 22:2817‐2822.
  Lato, S.M., Ozerova, N.D.S, He, K., Sergueeva, Z., Shaw, B.R., and Burke, D.H. 2002. Boron‐containing aptamers to ATP. Nucleic Acids Res. 30:1401‐1407.
  Levy, M. and Ellington, A.D. 2001. Section of deoxyribozyme ligases that catalyze the formation of an unnatural internucleotide linkage. Bioorg. Med. Chem. 9:2581‐2587.
  Levy, M. and Ellington, A.D. 2002. In vitro selection of a deoxyribozyme that can utilize multiple substrates. J. Mol. Evol. 54:180‐190.
  Li, M., Lin, N., Huang, Z., Du, L., Altier, C., Fang, H., and Wang, B. 2008. Selecting aptamers for a glycoprotein through the incorporation of boronic acid moiety. J. Am. Chem. Soc. 130:12636‐12638.
  Lin, Y., Qiu, Q., Gill, S.C., and Jayasena, S.D. 1994. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res. 22:5229‐5234.
  Lutz, M.J., Horlacher, J., and Benner, S.A. 1998. Recognition of a non‐standard base pair by thermostable DNA polymerases. Bioorg. Med. Chem. Lett. 8:1149‐1152.
  Lutz, S., Burgstaller, P., and Benner, S.A. 1999. An in vitro screening technique for DNA polymerases that can incorporate modified nucleotides. Pseudo‐thymidine as a substrate for thermostable polymerases. Nucleic Acids Res. 27:2792‐2798.
  Maden, B.E.H. 1990. The numerous modified nucleotides in eukaryotic ribosomal RNA. Prog. Nucl. Acid Res. Mol. Biol. 39:241‐303.
  Mallikaratchy, P., Tang, Z., Kwame, S., Meng, L., Shangguan, D., and Tan, W. 2007. Aptamer directly evolved from live cells recognizes membrane bound immunoglobin heavy mu chain in Burkitt's lymphoma cells. Mol. Cell. Proteomics. 6:2230‐2238.
  Marshall, K.A. and Ellington, A.D. 1999. Molecular parasites that evolve longer genomes. J. Mol. Evol. 49:656‐663.
  Mayer, G. 2009. The chemical biology of aptamers. Angew. Chem. Int. Ed. Engl. 48:2672‐2689.
  Mehan, M.R., Ostroff, R., Wilcox, S.K., Steele, F., Schneider, D., Jarvis, T.C., Baird, G.S., Gold, L., and Janjic, N. 2013. Highly multiplexed proteomic platform for biomarker discovery, diagnostics, and therapeutics. Adv. Exp. Med. Biol. 734:283‐300.
  Milligan, J.F. and Uhlenbeck, O.C. 1989. Synthesis of small RNAs using T7 RNA polymerase. Meth. Enzymol. 180:51‐62.
  Minakawa, N., Sanji, M., Kato, Y., and Matsuda, A. 2008. Investigations toward the selection of fully‐modified 4'‐thioRNA aptamers: Optimization of in vitro transcription steps in the presence of 4'‐thioNTPs. Bioorg. Med. Chem. 16:9450‐9456.
  Nakamaye, K.L., Gish, G., Eckstein, F., and Vosberg, H.P. 1988. Direct sequencing of polymerase chain reaction amplified DNA fragments through the incorporation of deoxynucleoside alpha‐thiotriphosphates. Nucleic Acids Res. 16:9947‐9959.
  Nieuwlandt, D., West, M., Cheng, X., Kirshenheuter, G., and Eaton, B.E. 2003. The first example of an RNA urea synthetase: Selection through the enzyme active site of human neutrophile elastase. Chem. Biol. Chem. 4:649‐662.
  Ochsner, U.A., Katilius, E., and Janjic, N. 2013. Detection of Clostridium difficile toxins A, B and binary toxin with slow off‐rate modified aptamer. Diagn. Microbiol. Infect. Dis. 76:278‐285.
  Padilla, R. and Sousa, R. 1999. Efficient synthesis of nucleic acids heavily modified with non‐canonical ribose 2′‐groups using a mutantT7 RNA polymerase (RNAP). Nucleic Acids Res. 27:1561‐1563.
  Padilla, R. and Sousa, R. 2002. A Y639F/H784A T7 RNA polymerase double mutant displays superior properties for synthesizing RNAs with non‐canonical NTPs. Nucleic Acids Res. 30:e138.
  Pagratis, N.C., Bell, C., Chang, Y.F., Jennings, S., Fitzwater, T., Jellinek, D., and Dang, C. 1997. Potent 2'‐amino‐ and 2'‐fluoro‐2'‐deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat. Biotechnol. 15:68‐73.
  Perrin, D.M., Garestier, T., and Helene, C. 2001. Bridging the gap between proteins and nucleic acids: A metal‐independent RNAseA mimic with two protein‐like functionalities. J. Am. Chem. Soc. 123:1556‐1563.
  Piccirilli, J.A., Krauch, T., Moroney, S.E., and Benner, S.A. 1990. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343:33‐37.
  Robertson, M.P. 2001. Ph.D. dissertation. Engineered regulation of an RNA ligase ribozyme. University of Texas, Austin, Texas.
  Robertson, M.P. and Ellington, A.D. 1999. In vitro selection of an allosteric ribozyme that transduces analytes to amplicons. Nat. Biotechnol. 17:62‐66.
  Robertson, M.P., Hesselberth, J.R., and Ellington, A.D. 2001. Optimization and optimality of a short ribozyme ligase that joins non‐Watson‐Crick base pairings. RNA 7:513‐523.
  Ruckman, J., Green, L.S., Beeson, J., Waugh, S., Gillette, W.L., Henninger, D.D., Claesson‐Welsh, L., and Janjic, N. 1998. 2′‐Fluoropyrimidine RNA‐based aptamers to the 165‐amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF‐induced vascular permeability through interactions requiring the exon 7‐encoded domain. J. Biol. Chem. 273:20556‐20567.
  Sakthivel, K. and Barbas, C.F. 1998. Expanding the potential of DNA for binding and catalysis: Highly functionalized dUTP derivatives that are substrates for thermostable DNA polymerases. Angew. Chem. Intl. Ed. 37:2872‐2875.
  Santoro, S.W. and Joyce, G.F. 1997. A general purpose RNA‐cleaving DNA enzyme. Proc. Natl. Acad. Sci. U.S.A. 94:4262‐4266.
  Santoro, S.W., Joyce, G.F., Sakthivel, K., Gramatikova, S., and Barbas, C.F. III. 2000. RNA cleavage by a DNA enzyme with extended chemical functionality. J. Am. Chem. Soc. 122:2433‐2439.
  Schoetzau, T., Langner, J., Moyround, E., Roehl, I., Vonhoff, S., and Klussmann, S. 2003. Amino modified nucleobases: Functionalized nucleoside triphosphates applicable for SELEX. Bioconjug. Chem. 14:919‐926.
  Seelig, B. and Jaschke, A. 1999. A small catalytic RNA motif with Diels‐Alderase activity. Chem. Biol. 6:167‐176.
  Siegmund, V., Santner, T., Micura, R., and Marx, A. 2011. Enzymatic synthesis of 2′‐methylseleno‐modified RNA. Chem. Sci. 2:2224‐2231.
  Siegmund, V., Santner, T., Micura, R., and Marx, A. 2012. Screening mutant libraries of T7 RNA polymerase for candidates with increased acceptance of 2′‐modified nucleotides. Chem. Commun. 48:9870‐9872.
  Shoji, A., Kuwahara, M., Ozaki, H., and Sawai, H. 2007. Modified DNA aptamer that binds the (R)‐isomer of thalidomide derivative with high enantioselectivity. J. Am. Chem. Soc. 129:1456‐1464.
  Slatko, B.E., Albright, L.M., Tabor, S., and Ju, J. 1999. DNA sequencing by the dideoxy method. Curr. Protoc. Mol. Biol. 47:7.4A.1‐7.4A.39.
  Smith, D., Collins, B.D., Heil, J., and Koch, T.H. 2003. Sensitivity and specificity of photoaptamer probes. Mol. Cell. Proteomics 2:11‐18.
  Sousa, R. and Padilla, R. 1995. A mutant T7 RNA polymerase as a DNA polymerase. EMBO J. 14:4609‐4621.
  Southworth, M.W., Kong, H., Kucera, R.B., Ware, J., Jannasch, H.W., and Perler, F.B. 1996. Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9°N‐7 and mutations affecting 3′‐5′ exonuclease activity. Proc. Natl. Acad. Sci. U.S.A. 93:5281‐5285.
  Tarasow, T.M., Tarasow, S.L., and Eaton, B.E. 1997. RNA‐catalysed carbon‐carbon bond formation. Nature 389:54‐57.
  Teramoto, N., Imanishi, Y., and Ito, Y. 2000. In vitro selection of a ligase ribozyme carrying alkylamino groups in the side chains. Bioconjug. Chem. 11:744‐748.
  Vaught, J.D., Bock, C., Carter, J., Fitzwater, T., Otis, M., Schneider, D., Rolando, J., Waugh, S., Wilcox, S.K., and Eaton, B.E. 2010. Expanding the chemistry of DNA for in vitro selection. J. Am. Chem. Soc. 132:4141‐4151.
  Veedu, R.N. and Wengel, J. 2010. Locked nucleic acids: Promising nucleic acid analogs for therapeutic applications. Chem. Biodivers. 7:536‐542.
  Waters, E.K., Genga, R.M., Schwartz, M.C., Nelson, J.A., Schaub, R.G., Olson, K.A., Kurz, J.C., and McGinness, K.E. 2011. Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood 117:5277‐5278.
  Wilson, C. and Keefe, A.D. 2006. Building oligonucleotide therapeutics using non‐natural chemistries. Curr. Opin. Chem. Biol. 10:607‐614.
  Wiegand, T.W., Janssen, R.C., and Eaton, B.E. 1997. Selection of RNA amide synthases. Chem. Biol. 4:675‐683.
  Wlotzka, B., Leva, S., Eschgfäller, B., Burmeister, J., Kleinjung, F., Kaduk, C., Muhn, P., Hess‐Stumpp, H., and Klussmann, S. 2002. In vivo properties of an anti‐GnRH Spiegelmer: An example of an oligonucleotide‐based therapeutic substance class. Proc. Natl. Acad. Sci. U.S.A. 99:8898‐8902.
  Yang, Z., Chen, F., Alvarado, J.B., Benner, S.A. 2011. Amplification, mutation, and sequencing of a six‐letter synthetic genetic system. J. Am. Chem. Soc. 133:15105‐15112.
  Zaccolo, M., Williams, D.M., Brown, D.M., and Gherardi, E. 1996. An approach to random mutagenesis of DNA using mixtures of triphosphate derivatives of nucleoside analogues. J. Mol. Biol. 255:589‐603.
  Zon, G. and Geiser, T.G. 1991. Phosphorothioate oligonucleotides: Chemistry, purification, analysis, scale‐up and future directions. Anticancer Drug Des. 6:539‐568.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library