Mass Determination of Phosphoramidites

Shinya Harusawa1, Mihoyo Fujitake1, Takushi Kurihara1, Zheng‐yun Zhao2, David M.J. Lilley2

1 Osaka University of Pharmaceutical Sciences, Osaka, Japan, 2 University of Dundee, Dundee
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 10.11
DOI:  10.1002/0471142700.nc1011s26
Online Posting Date:  October, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Nucleoside phosphoramidites are the most widely used building blocks in contemporary solid‐phase synthesis of oligonucleotides. The accurate molecular weight measurements of such molecules, which are acid‐labile compounds, may be easily determined by mass spectrometry using a matrix system, triethanolamine/NaCl, on a liquid secondary ion mass spectrometer (LSIMS) or fast‐atom bombardment (FAB) MS equipped with a double‐focusing mass spectrometer. The present method rapidly and easily measures the accurate molecular weights of various phosphoramidites as adduct ions [M+Na]+ with an average mass error smaller than 0.4 ppm, allowing determination of the formulas of the phosphoramidites in place of elemental analysis. Further, it was found that intensities of molecular‐related ions could be enhanced to the highest degree by adjustment of the molar ratio of phosphoramidite and NaCl, fixing the amount of triethanolamine on LSIMS, making the present method a powerful tool for identification of phosphoramidites by mass spectrometry.

Keywords: nucleoside; phosphoramidite; molecular weight; mass spectrometry; matrix

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Accurate Mass Measurement of Phosphoramidites Using Triethanolamine/NaCl
  • Alternate Protocol 1: Optimized Mass Measurement of Phosphoramidites Using Triethanolamine/NaCl
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Accurate Mass Measurement of Phosphoramidites Using Triethanolamine/NaCl

  Materials
  • Phosphoramidite to be analyzed (see )
  • Chloroform (>99% [GC]; Aldrich or TCI)
  • Triethanolamine (TEAO; FABMS and LSIMS grade; TCI)
  • Saline (0.9% NaCl in ultrapure water)
  • 2‐µL disposable capillary pipets (e.g., Minicaps; Hirshmann Laborgeräte)
  • Small glass tube
NOTE: Phosphoramidites S.1a‐d were synthesized in the laboratory (Araki et al., , ). Phosphoramidites in Figures 10.11.4 10.11.6 are available from Cruachem ( S.2a, S.2b, S.2d, S.2f, and S.3c), Proligo ( S.2c, S.2e, S.2g, S.3d, S.3f, and S.3h), Glen Research ( S.3a, S.3b, S.3e, S.3g, S.5a 5d, S.6a d, S.7‐16, and S.18), Dharmacon ( S.4a‐d), and Amersham Biosciences ( S.17). Synthesis of S.1e and S.1f is unpublished. Matrices composed of glycerol (G), m‐nitrobenzyl alcohol (NBA), diethanolamine (DEOA), 3:1 dithiothreitol/dithioerythritol (magic bullet, MB), triethanolamine (TEOA), or 1:1 dithiothreitol/α‐thioglycerol (DTT/TG) can be purchased from TCI (Tokyo Kasei Kogyo). Chloroform and TEOA may be purchased from various suppliers.

Alternate Protocol 1: Optimized Mass Measurement of Phosphoramidites Using Triethanolamine/NaCl

  • Microbalance (0.001 mg accuracy; e.g., Mettler ME30)
  • 1‐mL measuring safety pipet (e.g., Pyrex, Iwaki glass)
  • 0.2‐ to 2‐µL, 0.5‐ to 10‐µL, and 5‐ to 50‐µL micropipets (e.g., Finnpipette; Thermo Labsystems)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Araki, L., Harusawa, S., Yamaguchi, M., Yonezawa, S., Taniguchi, N., Lilley, D.M.J., Zhao, Z., and Kurihara, T. 2004. Synthesis of C4‐linked imidazole ribonucleoside phosphoramidites with pivaloyoxymethyl (POM) group. Tetrahedron Lett. 45:2657‐2661.
   Araki, L., Harusawa, S., Yamaguchi, M., Yonezawa, S., Taniguchi, N., Lilley, D.M.J., Zhao, Z., and Kurihara, T. 2005. Synthesis of novel C4‐linked imidazole ribonucleoside phosphoramidites for probing general acid and base catalysis in ribozyme. Tetrahedron 61:11976‐11985.
   Ashcroft, A.E. 1997. Ionization Methods in Organic Mass Spectrometry. The Royal Society of Chemistry, Cambridge, U.K.
   Ashraf, M.A., Notta, J.K., and Snaith, J.S. 2003. Solid phase synthesis of peptide dimers and trimers linked through an N‐terminal lysine residue. Tetrahedron Lett. 44:9115‐9119.
   Beigelman, L., Haeberli, P., Sweedler, D., and Karpeisky, A. 2000. Improved synthetic approaches toward 2′‐O‐methyl‐adenosine and guanosine and their N‐acyl derivatives. Tetrahedron 56:1047‐1056.
   Caruthers, M.H., Barone, A.D., Beaucage, S.L., Dodds, D.R., Fisher, E.F., McBride, L.J., Matteucci, M., Stabinsky, Z., and Tang, J.‐Y. 1987. Chemical synthesis of deoxyoligonucleotides by the phosphoramidite method. Methods Enzymol. 154:287‐313.
   Fujitake, M., Harusawa, S., Araki, L., Yamaguchi, M., Lilley, D.M.J., Zhao, Z.‐Y., and Kurihara, T. 2005. Accurate molecular weight measurements of nucleoside phosphoramidites: a suitable matrix of mass spectrometry. Tetrahedron 61:4689‐4699.
   Harusawa, S., Murai, Y., Moriyama, H., Imazu, T., Ohishi, H., Yoneda, R., and Kurihara, T. 1996. Efficient and β‐stereoselective synthesis of 4(5)‐(β‐D‐ribofuranosyl)‐ and 4(5)‐(2‐deoxyribofuranosyl)imidazoles. J. Org. Chem. 61:4405‐4411.
   Kele, Z., Kupihár, Z., Kovács, L., Janáky, T., and Szabó, P.T. 1999. Electrospray mass spectrometry of phosphoramidites, a group of acid‐labile compounds. J. Mass Spectrom. 34:1317‐1321.
   Kirk, J.S. and Bohn, P.W. 2004. Surface adsorption and transfer of organomercaptans to colloidal gold and direct identification by matrix assisted laser desorption/ionization mass spectrometry. J. Am. Chem. Soc. 126:5920‐5926.
   Korshun, V.A., Stetsenko, D.A., and Gait, M.J. 2002. Novel uridin‐2′‐yl carbamates: Synthesis, incorporation into oligodeoxyribonucleotides, and remarkable fluorescence properties of 2′‐pyren‐1‐ylmethylcarbamate. J. Chem. Soc. 1:1092‐1104.
   Köster, H., Biernat, J., McManus, J., Wolter, A., Stumpe, A., Narang, C.K., and Sinha, N.D. 1984. Polymer support oligonucleotide synthesis–XV. Synthesis of oligodeoxynucleotides on controlled pore glass (CPG) using phosphate and a new phosphite triester approach. Tetrahedron 40:103‐112.
   Lu, X., He, X., Feng, L., Shi, Z., and Gu, Z. 2004. Synthesis of pyrrolidine ring‐fused metallofullerene derivatives. Tetrahedron 60:3713‐3716.
   Madhusudanan, K.P. 1995. Alkali metal cationization and its effect on the collision‐induced decomposition of taxol. J. Mass Spectrom. 30:703‐707.
   McKeen, C.M., Brown, L.J., Nicol, J.T.G., Mellor, J.M., and Brown, T. 2003. Synthesis of fluorophore and quencher monomers for use in scorpion primers and nucleic acid structural probes. Org. Biomol. Chem. 1:2267‐2275.
   Olejnik, J., Krzymańska‐Olejnik, E., and Rothschild, K.J. 1996. Photocleavable biotin phosphoramidite for 5′‐end‐labeling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucl. Acids Res. 24:361‐366.
   Pitsch, S., Weiss, P.A., Jenny, L., Stutz, A., and Wu, X. 2001. Reliable chemical synthesis of oligoribonucleosides (RNA) with 2′‐O‐[(triisopropylsilyl)oxy]methyl (2′‐O‐tom)‐protected phosphoramidites. Helv. Chim. Acta. 84:3773‐3795.
   Reese, C.B. 2002. The chemical synthesis of oligo‐ and poly‐nucleotides: A personal commentary. Tetrahedron 58:8893‐8920.
   Roy, S.K. and Tang, J.‐Y. 2000. Efficient large scale synthesis of 2′‐O‐alkyl pyrimidine ribonucleosides. Org. Process Res. Dev. 4:170‐171.
   Scaringe, S.A. 2000. Advanced 5′‐silyl‐2′‐orthoester approach to RNA oligonucleotide synthesis. Methods Enzymol. 317:3‐19.
   Scaringe, S.A., Wincott, F.E., and Caruthers, M.H. 1998. Novel RNA synthesis method using 5′‐O‐silyl‐2′‐O‐orthoester protecting groups. J. Am. Chem. Soc. 120:11820‐11821.
   Shishkina, I.G. and Johnson, F. 2000. A new method for the postsynthetic generation of abasic sites in oligomeric DNA. Chem. Res. Toxicol. 13:907‐912.
   Takayama, M. 1994. Fast atom bombardment mass spectrometry: matrix effects on ion formation and fragmentation. J. Mass Spectrom. Soc. Jpn. 42:249‐275.
   Teesch, L.M. and Adams, J. 1992. Metal ions as special reagents in analytical mass spectrometry. 1992. Org. Mass Spectrom. 27:931‐943.
   Toren, P.C., Betsch, D.F., Weith, H.L., and Coull, J.M. 1986. Determination of impurities in nucleoside 3′‐phosphoramidites by fast atom bombardment mass spectrometry. Anal. Biochem. 152:291‐294.
   Usman, N., Ogilvie, K.K., Jiang, M.‐Y., and Cedergren, R.J. 1987. Automated chemical synthesis of long oligoribonucleotides using 2′‐O‐silylated ribonucleoside 3′‐O‐phosphoramidites on a controlled‐pore glass support: Synthesis of a 43‐nucleotide sequence similar to the 3′‐half molecule of an Escherichia coli formylmethionine tRNA. J. Am. Chem. Soc. 109:7845‐7854.
   Wincott, F., DiRenzo, A., Shaffer, C., Grimm, S., Tracz, D., Workman, C., Sweedler, D., Gonzalez, C., Scaringe, S., and Usman, N. 1995. Synthesis, deprotection, analysis and purification of RNA and ribozymes. Nucl. Acids Res. 23:2677‐2684.
   Wilson, T., Ouellet, J., Zhao, Z, Harusawa, S., Araki, L., Kurihara, T., and Lilley, M.J. 2006. Nucleobase catalysis in the hairpin ribozyme. RNA 12:980‐987.
   Zatsepin, T.S., Ivanova, Y.M., and Oretskaya, T.S. 2004. Synthesis of (2′S)‐ and (2′R)‐2′‐deoxy‐2′‐[(2‐methoxyethoxy)amino]pyridine nucleosides and oligonucleotides. Chem. Biodiver. 1:1537‐1545.
   Zhao, Z., Mcleod, A., Harusawa, S., Araki, L., Yamaguchi, M., Kurihara, T., and Lilley, D.M.J. 2005. Nucleobase participation in ribozyme catalysis. J. Am. Chem. Soc. 127:5026‐5027.
   Zhu, X. and Schmidt, R.R. 2003. Selective conversion of N‐trichloroethoxycarbonyl (Troc) groups into N‐acetyl groups in the presence of N‐tert‐butoxycarbonyl (Boc) protecting groups. Synthesis 2003:1262.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library