Recent Progress in DNA Origami Technology

Masayuki Endo1, Hiroshi Sugiyama2

1 Institute for Integrated Cell‐Material Sciences (iCeMS), Kyoto University, Kyoto, Japan, 2 Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 12.8
DOI:  10.1002/0471142700.nc1208s45
Online Posting Date:  June, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

DNA origami is an emerging technology for designing defined two‐dimensional DNA nanostructures. In this review, we focus on and describe several types of DNA origami‐related studies, as follows: (1) programmed DNA origami assembly, (2) DNA origami‐templated molecular assembly, (3) design and construction of various three‐dimensional DNA origami structures, (4) programmed functionalization of DNA origami and combination with top‐down nanotechnology, (5) single molecular observation on a designed DNA origami, and (6) DNA nanomachines working on a DNA origami. Curr. Protoc. Nucleic Acid Chem. 45:12.8.1‐12.8.19. © 2011 by John Wiley & Sons, Inc.

Keywords: DNA origami; designed nanospace; single molecular analysis; DNA nanomachine; high‐speed AFM

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Two‐Dimensional DNA Origami
  • Conclusion and Prospects
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Andersen, E.S., Dong, M., Nielsen, M.M., Jahn, K., Subramani, R., Mamdouh, W., Golas, M.M., Sander, B., Stark, H., Oliveira, C.L., Pedersen, J.S., Birkedal, V., Besenbacher, F., Gothelf, K.V., and Kjems, J. 2009. Self‐assembly of a nanoscale DNA box with a controllable lid. Nature 459:73‐76.
   Barish, R.D., Schulman, R., Rothemund, P.W., and Winfree, E. 2009. An information‐bearing seed for nucleating algorithmic self‐assembly. Proc. Natl. Acad. Sci. U.S.A. 106:6054‐6059.
   Bath, J. and Turberfield, A.J. 2007. DNA nanomachines. Nature Nanotechnol. 2:275‐284.
   Chhabra, R., Sharma, J., Ke, Y., Liu, Y., Rinker, S., Lindsay, S., and Yan, H. 2007. Spatially addressable multiprotein nanoarrays templated by aptamer‐tagged DNA nanoarchitectures. J. Am. Chem. Soc. 129:10304‐10305.
   Dietz, H., Douglas, S.M., and Shih, W.M. 2009. Folding DNA into twisted and curved nanoscale shapes. Science 325:725‐730.
   Ding, B., Deng, Z., Yan, H., Cabrini, S., Zuckermann, R.N., and Bokor, J. 2010. Gold nanoparticle self‐similar chain structure organized by DNA origami. J. Am. Chem. Soc. 132:3248‐3249.
   Ding, B. and Seeman, N.C. 2006. Operation of a DNA robot arm inserted into a 2D DNA crystalline substrate. Science 314:1583‐1585.
   Douglas, S.M., Dietz, H., Liedl, T., Högberg, B., Graf, F., and Shih, W.M. 2009a. Self‐assembly of DNA into nanoscale three‐dimensional shapes. Nature 459:414‐418.
   Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., and Shih, W.M. 2009b. Rapid prototyping of 3D DNA‐origami shapes with caDNAno. Nucleic Acids Res. 37:5001‐5006.
   Endo, M. and Sugiyama, H. 2009. Chemical approaches to DNA nanotechnology. ChemBioChem 10:2420‐2443.
   Endo, M. Hidaka, K. Kato, T., Namba, K., and Sugiyama, H. 2009. DNA prism structures constructed by folding of multiple rectangular arms. J. Am. Chem. Soc. 131:15570‐15571.
   Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. 2010a. Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. J. Am. Chem. Soc. 132:1592‐1597.
   Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. 2010b. A versatile DNA nanochip for direct analysis of DNA base‐excision repair. Angew. Chem. Int. Ed. 49:9412‐9416.
   Endo, M., Sugita, T., Katsuda, Y., Hidaka, K., and Sugiyama, H. 2010c. Programmed‐assembly system using DNA jigsaw pieces. Chem. Eur. J. 16:5362‐5368.
   Endo, M., Hidaka, K., and Sugiyama, H. 2011a. Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure.Org. Biomol. Chem. 9:2075‐2077.
   Endo, M., Sugita, T., Rajendran, A., Katsuda, Y., Emura, T., Hidaka, K., and Sugiyama, H. 2011b. Two‐dimensional DNA origami assemblies using a four‐way connector. Chem. Commun. 47:3213‐3215.
   Feldkamp, U. and Niemeyer, C.M. 2006. Rational design of DNA nanoarchitectures. Angew. Chem. Int. Ed. 45:1856‐1876.
   Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., and Murata, S. 2008. Toward reliable algorithmic self‐assembly of DNA tiles: A fixed‐width cellular automaton pattern. Nano Lett. 8:1791‐1797.
   Gu, H., Chao, J., Xiao, S., and Seeman, N.C. 2009. Dynamic patterning programmed by DNA tiles captured on a DNA origami substrate. Nature Nanotechnol. 4:245‐248.
   Gu, H., Chao, J., Xiao, S., and Seeman, N.C. 2010. A proximity‐based programmable DNA nanoscale assembly line. Nature 465:202‐205.
   Högberg, B., Liedl, T., and Shih, W.M. 2009. Folding DNA origami from a double‐stranded source of scaffold. J. Am. Chem. Soc. 131:9154‐9155.
   Hung, A.M., Micheel, C.M., Bozano, L.D., Osterbur, L.W., Wallraff, G.M., and Cha, J.N. 2010. Large‐area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotechnol. 5:121‐126.
   Ke, Y., Lindsay, S., Chang, Y., Liu, Y., and Yan, H. 2008. Self‐assembled water‐soluble nucleic acid probe tiles for label‐free RNA hybridization assays. Science 319:180‐183.
   Ke, Y., Sharma, J., Liu, M., Jahn, K., Liu, Y., and Yan, H. 2009. Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano. Lett. 9:2445‐2447.
   Kershner, R.J., Bozano1, L.D., Micheel, C.M., Hung, A.M., Fornof, A.R., Cha, J.N., Rettner, C.T., Bersani, M., Frommer, J., Rothemund, P.W. and Wallraff, G.M. 2009. Placement and orientation of individual DNA shapes on lithographically patterned surfaces. Nature Nanotechnol. 4:557‐561.
   Kuzuya, A. and Komiyama, M. 2009. Design and construction of a box‐shaped 3D‐DNA origami. Chem. Commun. 28:4182‐4184.
   Kuzuya, A., Kimura, M., Numajiri, K., Koshi, N., Ohnishi, T., Okada, F., and Komiyama, M. 2009. Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer‐scale wells embedded in DNA origami assembly. ChemBioChem 10:1811‐1815.
   Liao, S. and Seeman, N.C. 2004. Translation of DNA signals into polymer assembly instructions. Science 306:2072‐2074.
   Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson‐Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., and Yan, H. 2010. Molecular robots guided by prescriptive landscapes. Nature 465:206‐210.
   Maune, H.T., Han, S.P., Barish, R.D., Bockrath, M., Iii, W.A., Rothemund, P.W., and Winfree, E. 2010. Self‐assembly of carbon nanotubes into two‐dimensional geometries using DNA origami templates. Nature Nanotechnol. 5:61‐66.
   Omabegho, T., Sha, R., and Seeman, N.C. 2009. A bipedal DNA Brownian motor with coordinated legs. Science 324:67‐71.
   Pound, E., Ashton, J.R., Becerril, H.A., and Woolley, A.T. 2009. Polymerase chain reaction based scaffold preparation for the production of thin, branched DNA origami nanostructures of arbitrary sizes. Nano Lett. 9:4302‐4305.
   Rajendran, A., Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. 2011. Programmed two‐dimensional self‐assembly of multiple DNA origami jigsaw pieces. ACS Nano 5:665‐671.
   Rinker, S., Ke, Y., Liu, Y., Chhabra, R., and Yan, H. 2008. Self‐assembled DNA nanostructures for distance‐dependent multivalent ligand‐protein binding. Nature. Nanotechnol. 3:418‐422.
   Rothemund, P.W. 2006. Folding DNA to create nanoscale shapes and patterns. Nature 440:297‐302.
   Rothemund, P.W., Papadakis, N., and Winfree, E. 2004. Algorithmic self‐assembly of DNA Sierpinski triangles. PLoS Biol. 2:e424.
   Sannohe, Y., Endo, M., Katsuda, Y., Hidaka, K., and Sugiyama, H. 2010. Visualization of dynamic conformational switching of the G‐quadruplex in a DNA nanostructure. J. Am. Chem. Soc. 132:16311‐16313.
   Seeman, N.C. 2003. DNA in a material world. Nature 421:427‐431.
   Sharma, J., Chhabra, R., Andersen, C.S., Gothelf, K.V., Yan, H., and Liu, Y. 2008. Toward reliable gold nanoparticle patterning on self‐assembled DNA nanoscaffold. J. Am. Chem. Soc. 130:7820‐7821.
   Shen, W., Zhong, H., Neff, D., and Norton, M.L. 2009. NTA directed protein nanopatterning on DNA Origami nanoconstructs. J. Am. Chem. Soc. 131:6660‐6661.
   Voigt, N.V., Torring, T., Rotaru, A., Jacobsen, M.F., Ravnsbak, J.B., Subramani, R., Mamdouh, W., Kjems, J., Mokhir, A., Besenbacher, F., and Gothelf, K.V. 2010. Single‐molecule chemical reactions on DNA origami. Nature Nanotechnol. 5:200‐203.
   Wickham, S., Endo, M., Katsuda, Y., Hidaka, K., Bath, J., Sugiyama, H., and Turberfield, A.J. 2011. Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotechnol. 6:166‐169.
   Yan, H., Zhang, X., Shen, Z., and Seeman, N.C. 2002. A robust DNA mechanical device controlled by hybridization topology. Nature 415:62‐65.
   Youngblood, B. and Reich, N.O. 2006, Conformational transitions as determinants of specificity for the DNA methyltransferase EcoRI. J. Biol. Chem. 281:26821‐26831.
   Yurke, B., Turberfield, A.J., Mills, A.P. Jr., Simmel, F.C., and Neumann, J.L. 2000. A DNA‐fuelled molecular machine made of DNA. Nature 406:605‐608.
   Zhao, Z., Yan, H., and Liu, Y. 2010. A route to scale up DNA origami using DNA tiles as folding staples. Angew. Chem. Int. Ed. 49:1414‐1417.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library