Nucleoside‐5′‐Phosphoimidazolides: Reagents for Facile Synthesis of Dinucleoside Pyrophosphates

Liqiang Chen1, Dominik Rejman1, Laurent Bonnac1, Krzysztof W. Pankiewicz1, Steven E. Patterson1

1 Center for Drug Design, The University of Minnesota, Minneapolis, Minnesota
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 13.4
DOI:  10.1002/0471142700.nc1304s23
Online Posting Date:  January, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

A facile method is presented for preparation of dinucleoside pyrophosphate derivatives based on reaction of a nucleoside 5′‐monophosphate with carbonyldiimidazole followed by treatment of the resulting nucleoside 5′‐phosphoimidazolide with a nucleoside 5′‐phosphate. This method is suitable for preparation of pyrophosphates analogous to NAD, FAD, and related natural pyrophosphates. The resulting compounds are useful for mechanistic studies of enzymes that use natural pyrophosphates as co‐factors or substrates, and in development of inhibitors that have potential applications as therapeutic agents.

Keywords: NAD analog; nucleoside pyrophosphate; phosphoimidazole

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Preparation of Nucleoside 5′‐Phosphoimidazolides from Nucleoside 5′‐Monophosphates
  • Alternate Protocol 1: Preparation of Nucleoside 5′‐Phosphoimidazolides from 2′,3′‐Protected Nucleoside‐5′‐Monophosphates
  • Basic Protocol 2: Preparation of Dinucleoside Pyrophosphates
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of Nucleoside 5′‐Phosphoimidazolides from Nucleoside 5′‐Monophosphates

  Materials
  • Nucleoside 5′‐monophosphate (commercially available or by Yoshikawa reaction; Yoshikawa et al., )
  • Anhydrous N,N‐dimethylformamide (DMF; Aldrich)
  • Anhydrous N,N‐dimethylformamide‐d 7 (DMF d7; Aldrich)
  • 1,1′‐Carbonyldiimidazole (CDI), 95% pure
  • 0.1 M triethylammonium bicarbonate (TEAB), pH 7.3 (see recipe), or 0.1 M triethylamine (TEA), pH 9.0
  • 0.04 M TEAB, pH 7.3 (see recipe)
  • Acetonitrile (CH 3CN), HPLC grade
  • Water (deionized; resistivity > 18 MΩcm)
  • NMR spectrometer and 5‐mm NMR tubes
  • HPLC system with:
    • C18 HPLC column (Varian microsorb; 250 × 41.4–mm; 8‐µm particle size, 100 Å pore size)
    • UV/Vis detector (260 nm)
  • Rotary evaporator equipped with a vacuum pump
  • Lyophilizer
  • Additional reagents and equipment for NMR and RP‐HPLC

Alternate Protocol 1: Preparation of Nucleoside 5′‐Phosphoimidazolides from 2′,3′‐Protected Nucleoside‐5′‐Monophosphates

  Materials
  • Nucleoside 5′‐phosphoimidazolide (see protocol 1 or protocol 2)
  • Anhydrous N,N‐dimethylformamide (DMF; Aldrich)
  • Anhydrous N,N‐dimethylformamide‐d 7 (DMF d7; Aldrich)
  • Nucleoside 5′‐monophosphate (commercially available or by Yoshikawa reaction; Yoshikawa et al., )
  • 0.04 M triethylammonium bicarbonate (TEAB), pH 7.3 (see recipe)
  • Acetonitrile (CH 3CN), HPLC grade
  • Water (deionized; resistivity > 18 MΩcm)
  • Dowex 50WX8‐200 H+ and Na+ forms
  • NMR spectrometer and 5‐mm NMR tubes
  • Rotary evaporator
  • Lyophilizer
  • HPLC system with:
    • C18 HPLC column (Varian microsorb, 250 × 41.4 mm, 8‐µm particle size, 100 Å pore size)
    • UV/Vis detector (260 nm)
  • Additional reagents and equipment for NMR, RP‐HPLC, and ion‐exchange chromatography
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Cramer, F. and Neunhoeffer, H. 1962. Reaktionen von adenosine‐5′‐phosphorsaure‐imidazolid‐eine neue synthese von adenosindiphosphat und flavin‐adenin‐dinucleotid. Chem. Ber. 95:1664‐1669.
   Denu, J.M. 2003. Linking chromatin function with metabolic networks: Sir2 family of NAD(+)‐dependent deacetylases. Trends Biochem. Sci. 28:41‐48.
   Dolphin, D., Poulson, R., and Avramovic, O. 1987. Pyridine Nucleotide Coenzymes: Chemical, Biochemical, and Medical Aspects. John Wiley & Sons, New York.
   Gebeyehu, G., Marquez, V.E., Van Cott, A., Cooney, D.A., Kelley, J.A., Jayaram, H.N., Ahluwalia, G.S., Dion, R.L., Wilson, Y.A., and Johns, D.G. 1985. Ribavirin, tiazofurin, and selenazofurin: Mononucleotides and nicotin‐amide adenine dinucleotide analogues. Synthesis, structure, and interactions with IMP dehydrogenase. J. Med. Chem. 28:99‐105.
   Hedstrom, L., Gan, L., Schlippe, Y.G., Riera, T., and Seyedsayamdost, M. 2003. IMP dehydrogenase: The dynamics of drug selectivity. Nucl. Acids Res. 3:97‐98.
   Lee, H.C. 2002. Cyclic ADP‐Ribose and NAADP: Structure, Metabolism and Functions. Plenum, New York.
   Li, H., Hallows, W.A., Punzi, J.S., Marquez, V.E., Carrell, H.L., Pankiewicz, K.W., Watanabe, K.A., and Goldstein, B.M. 1994a. Crystallographic studies of two alcohol dehydrogenase‐bound analogs of thiazole‐4‐carboxamide adenine dinucleotide (TAD), the active anabolite of the antitumor agent tiazofurin. Biochemistry 33:23‐32.
   Li, H., Hallows, W.H., Punzi, J.S., Pankiewicz, K.W., Watanabe, K.A., and Goldstein, B.M. 1994b. Crystallographic studies of isosteric NAD analogues bound to alcohol dehydrogenase: Specificity and substrate binding in two ternary complexes. Biochemistry 33:11734‐11744.
   Pankiewicz, K. and Goldstein, B.M. 2003. Inosine Monophosphate Dehydrogenase: A Major Therapeutic Target. ACS Symposium Series No. 839. Oxford University Press, Oxford, U.K.
   Pankiewicz, K.W., Watanabe, K.A., Lesiak‐Watanabe, K., Goldstein, B.M., and Jayaram, H.N. 2002a. The chemistry of nicotinamide adenine dinucleotide (NAD) analogues containing C‐nucleosides related to nicotinamide riboside. Curr. Med. Chem. 9:733‐741.
   Pankiewicz, K.W., Lesiak‐Watanabe, K.B., Watanabe, K.A., Patterson, S.E., Jayaram, H.N., Yalowitz, J.A., Miller, M.D., Seidman, M., Majumdar, A., Prehna, G., and Goldstein, B.M. 2002b. Novel mycophenolic adenine bis(phosphonate) analogues as potential differentiation agents against human leukemia. J. Med. Chem. 45:703‐712.
   Pankiewicz, K.W., Patterson, S.E., Black, P.L., Jayaram, H.N., Risal, D., Goldstein, B.M., Stuyver, L.J., and Shinazi, R.F. 2004. Cofactor mimics as selective inhibitors of NAD‐dependent inosine monophosphate dehydrogenase (IMPDH)—the major therapeutic target. Curr. Med. Chem. 11:887‐900.
   Saunders, J.O. and Raybuck, S.A. 2000. Annual Reports in Medicinal Chemistry. Academic Press, San Diego.
   Scheit, K.H. 1980. Nucleotide Analogs. Synthesis and Biological Function. John Wiley & Sons, New York.
   Yoshikawa, M., Kato, T., and Takenishi, T. 1967. A novel method for phosphorylation of nucleosides to 5′‐mononucleotides. Tetrahedron Lett. 8:5065‐5068.
   Zatorski, A., Lipka, P., Mollova, N., Schram, K.H., Goldstein, B.M., Watanabe, K.A., and Pankiewicz, K.W. 1993. Synthesis of thiazole‐4‐carboxamide‐adenine difluoro‐methylene‐diphosphonates substituted with fluorine at C‐2′ of the adenosine. Carbohydr. Res. 249:95‐108.
   Zatorski, A., Goldstein, B.M., Colby, T.D., Jones, J.P., and Pankiewicz, K.W. 1995. Potent inhibitors of human inosine monophosphate dehydrogenase type II. Fluorine‐substituted analogues of thiazole‐4‐carboxamide adenine dinucleotide. J. Med. Chem. 38:1098‐1105.
   Zatorski, A., Watanabe, K.A., Carr, S.F., Goldstein, B.M., and Pankiewicz, K.W. 1996. Chemical synthesis of benzamide adenine dinucleotide: Inhibition of inosine monophosphate dehydrogenase (types I and II). J. Med. Chem. 39:2422‐2426.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library