Gram‐Scale Chemical Synthesis of Base‐Modified Ribonucleoside‐5′‐O‐Triphosphates

Muthian Shanmugasundaram1, Annamalai Senthilvelan1, Anilkumar R. Kore1

1 Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, Texas
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 13.15
DOI:  10.1002/cpnc.20
Online Posting Date:  December, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit delineates a simple, reliable, straight‐forward, general, and efficient chemical method for the synthesis of modified nucleoside‐5′‐O‐triphosphates such as 5‐methylcytidine‐5′‐O‐triphosphate (5‐Me‐CTP), pseudouridine‐5′‐O‐triphosphate (pseudo‐UTP), and N1‐methylpseudouridine‐5′‐O‐triphosphate (N1‐methylpseudo‐UTP), starting from the corresponding nucleoside. The reaction utilizes an improved protection‐free “one‐pot, three‐step” Ludwig synthetic strategy that involves the monophosphorylation of the nucleoside with phosphorous oxychloride followed by reaction with tributylammonium pyrophosphate and subsequent hydrolysis of the resulting cyclic intermediate to furnish the corresponding ribonucleoside triphosphate (NTP) in moderate yields. It is noteworthy that the reaction affords high purity (>99.5%) NTPs after DEAE Sepharose column purification. © 2016 by John Wiley & Sons, Inc.

Keywords: ribonucleotides; chemical synthesis; one‐pot synthesis; messenger RNA; gene therapy; vaccination therapy

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Tributylammonium pyrophosphate (prepared as in Ludwig and Eckstein, )
  • Acetonitrile, anhydrous (e.g., Fisher Scientific)
  • Tributylamine (e.g., Fisher Scientific)
  • Nucleosides:
    • 5‐Methylcytidine (e.g., ChemGenes, cat. no. RP‐1832)
    • Pseudouridine (e.g., ChemGenes, custom synthesis)
    • N1‐methylpseudouridine (e.g., ChemGenes, custom synthesis)
  • Trimethylphosphate, >97% pure (e.g., Sigma‐Aldrich)
  • Phosphorous oxychloride (e.g., Acros)
  • Dichloromethane (DCM; e.g., Fisher Scientific)
  • Ammonium hydroxide, 28% NH 3 in water (e.g., Fisher Scientific)
  • DEAE Sepharose (e.g., GE Healthcare)
  • Isopropanol (e.g., Fisher Scientific)
  • 2.0 M NaCl (see recipe)
  • 1.0 M triethylammonium bicarbonate (TEAB) buffer (see recipe)
  • HPLC mobile phase A: 5 mM ammonium phosphate monobasic, pH 2.8 (see recipe)
  • HPLC mobile phase B: 750 mM ammonium phosphate monobasic, pH 3.7 (see recipe)
  • Sodium perchlorate (e.g., Fisher Scientific)
  • Acetone (e.g., Fisher Scientific)
  • 500‐mL and 1‐L centrifuge bottles
  • 1‐L one‐neck round‐bottom flasks, oven dried (e.g., Chemglass)
  • Rubber septa for 24/40 glass joints (e.g., Chemglass)
  • Teflon‐coated magnetic stir bar and magnetic stir plate
  • Vacuum/nitrogen (or argon) gas manifold
  • Ice bath and ice/NaCl bath (−5°C to −10οC)
  • 1‐mL, 2‐mL, and 5‐mL sealed glass syringes with disposable needles (e.g., Fisher Scientific)
  • Addition funnel
  • 2‐L separatory funnel
  • 4‐L conical flask
  • Chromatography column: 10 cm × 78.5 cm
  • FPLC ÄKTA purifier (e.g., GE Healthcare) including:
    • Gradient pump
    • UV detector: 260 nm and 272 nm
  • HPLC system (e.g., Waters) including:
    • Detector module
    • Hypersil SAX column (4.6 mm × 25 cm)
  • Rotary evaporator
  • Centrifuge (e.g., Sorvall RC‐3B)
  • Additional reagents and equipment for proton nuclear magnetic resonance (1H NMR and 31P NMR; unit 7.2), and mass spectrometry (unit 10.2)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Ahmadibeni, Y. and Parang, K. 2008. Solid‐supported diphosphitylating and triphosphitylating reagents for nucleoside modification. Curr. Protoc. Nucl. Acid. Chem. 33:13.8.1‐13.8.29. doi: 10.1002/0471142700.nc1308s33.
  Anderson, B.R., Muramatsu, H., Nallagatla, S.R., Bevilacqua, P.C., Sansing, L.H., Weissman, D., and Karikó, K. 2010. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucl. Acids Res. 38:5884‐5892. doi: 10.1093/nar/gkq347.
  Andries, O., Mc Cafferty, S., De Smedt, S.C., Weiss, R., Sanders, N.N., and Kitada, T. 2015. N(1)‐Methylpseudouridine‐incorporated mRNA outperforms pseudouridine‐incorporated mRNA by providing enhanced protein expression and reduced immunogenicity in mammalian cell lines and mice. J. Control. Release 217:337‐344. doi: 10.1016/j.jconrel.2015.08.051.
  Baddiley, J., Michelson, A.M., and Todd, A.R. 1949. Nucleotides. Part II. A synthesis of adenosine triphosphate. J. Chem. Soc. 582‐586. doi: 10.1039/jr9490000582.
  Bernal, J.A. 2013. RNA‐based tools for nuclear reprogramming and lineage‐conversion: Towards clinical applications. J. Cardiovasc. Trans. Res. 6:956‐968. doi: 10.1007/s12265‐013‐9494‐8.
  Burgess, K. and Cook, D. 2000. Syntheses of nucleoside triphosphates. Chem. Rev. 100:2047‐2059. doi: 10.1021/cr990045m.
  Burnett, J.C. and Rossi, J.J. 2012. RNA‐based therapeutics: Current progress and future prospects. Chem. Biol. 19:60‐71. doi: 10.1016/j.chembiol.2011.12.008.
  Castleberry, C. M., Rodicio, L. P., and Limbach, P. A. 2008. Electrospray ionization mass spectrometry of oligonucleotides. Curr. Protoc. Nucl. Acid Chem. 35:10.2.1‐10.2.19. doi: 10.1002/0471142700.nc1002s35.
  Davisson, V.J., Davis, D.R., Dixit, V.M., and Poulter, C.D. 1987. Synthesis of nucleotide‐5′‐diphosphates from 5′‐O‐tosyl nucleosides. J. Org. Chem. 52:1794‐1801. doi: 10.1021/jo00385a026.
  Gillerman, I. and Fischer, B. 2010. An improved one‐pot synthesis of nucleoside 5′‐triphosphate analogues. Nucleosides Nucleotides Nucleic Acids 29:245‐256. doi: 10.1080/15257771003709569.
  Hoard, D.E. and Ott, D.G. 1965. Conversion of mono‐ and oligodeoxyribonucleotides to 5′‐triphosphates. J. Am. Chem. Soc. 87:1785‐1788. doi: 10.1021/ja01086a031.
  Hollenstein, M. 2012. Nucleoside triphosphates–Building blocks for the modification of nucleic acids. Molecules 17:13569‐13591. doi: 10.3390/molecules171113569.
  Hyewon, Y. and June‐Key, C. 2015. Modified mRNA as an alternative to plasmid DNA (pDNA) for transcript replacement and vaccination therapy. Expert Opin. Biol. Ther. 15:1339‐1348. doi: 10.1517/14712598.2015.1057563.
  James, T. L. 2001. NMR Determination of Oligonucleotide Structure. Curr. Protoc. Nucl. Acid Chem. 7.2:7.2.1‐7.2.16. doi: 10.1002/0471142700.nc0702s00.
  Karikó, K., Muramatsu, H., Welsh, F.A., Ludwig, J., Kato, H., Akira, S., and Weissman, D. 2008. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther. 16:1833‐1840. doi: 10.1038/mt.2008.200.
  Kore, A.R., Shanmugasundaram, M., Senthilvelan, A., and Srinivasan, B. 2012. Gram‐scale chemical synthesis of 2′‐deoxynucleoside‐5′‐O‐triphosphates. Curr. Protoc. Nucl. Acid Chem. 49:13.10.1‐13.10.12. doi: 10.1002/0471142700.nc1310s49.
  Ludwig, J. 1981. A new route to nucleoside 5′‐triphosphates. Acta. Biochim. Biophy. Acad. Hung. 16:131‐133.
  Ludwig, J. and Eckstein, F. 1989. Rapid and efficient synthesis of nucleoside 5′‐O‐(1‐thiotriphosphates),5′‐triphosphates and 2′3′‐cyclophosphorothiolates using 2‐chloro‐4H‐1,3,2‐benzodioxaphosphorin‐4‐one. J. Org. Chem. 54:631‐635. doi: 10.1021/jo00264a024.
  Moffatt, J.G. 1964. General synthesis of nucleoside 5′‐triphosphate. Can. J. Chem. 42:599‐604. doi: 10.1139/v64‐087.
  Ponsaerts, P., van Teneloo, V.F., Jorens, P.G., Berneman, Z.N., and van Bockstaele, D.R. 2004. Current challenges in human embryonic stem cell research: Directed differentiation and transplantation tolerance. J. Biol. Regul. Homeost. Agents 18:47‐351.
  Sahin, U., Karikó, K., and Türeci, O. 2014. mRNA‐based therapeutics–Developing a new class of drugs. Nat. Rev. Drug Discov. 213:759‐780. doi: 10.1038/nrd4278.
  Shanmugasundaram, M., Senthilvelan, A., Xiao, Z., and Kore, A.R. 2016. An efficient protection‐free one‐pot chemical synthesis of modified nucleoside‐5′‐O‐triphosphates. Nucleosides Nucleotides Nucleic Acids 35:356‐362. doi: 10.1080/15257770.2016.1163382.
  Simoncsits, A. and Tomasz, J. 1975. Nucleoside 5′‐phosphordiamidates, synthesis and some properties. Nucl. Acids Res. 2:1223‐1233. doi: 10.1093/nar/2.7.1223.
  Steinman, R.M. and Hemmi, H. 2006. Dendritic cells: Translating innate to adaptive immunity. Curr. Top. Microbiol. Immunol. 311:17‐58. doi: 10.1007/3‐540‐32636‐7_2.
  Sullenger, B.A. and Gilboa, E. 2002. Emerging clinical applications of RNA. Nature 418: 252‐258. doi: 10.1038/418252a.
  van Teneloo, V.F., Ponsaerts, P., and Berneman, Z.N. 2007. mRNA‐based gene transfer as a tool for gene and cell therapy. Curr. Opin. Mol. Ther. 9:423‐431.
  Wang, Y., Su, H., Yang, Y., Hu, Y., Zhang, L., Blancafort, P., and Huang, L. 2013. Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol. Ther. 21:358‐367 doi: 10.1038/mt.2012.250.
  Warren, L., Manos, P.D., Ahfeldt, T., Loh, Y.H., Li, H., Lau, F., Ebina, W., Mandal, P.K., Smith, Z.D., Meissner, A., Daley, G.Q., Brack, A.S., Collins, J.J., Cowan, C., Schalaeger, T.M., and Rossi, D.J. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618‐630. doi: 10.1016/j.stem.2010.08.012.
  Wu, W., Bergstrom, D.E., and Davisson, V.J. 2004. Chemoenzymatic preparation of nucleoside triphosphates. Curr. Protoc. Nucl. Acid Chem. 16:13.2.1‐13.2.19. doi: 10.1002/0471142700.nc1302s16.
  Yoshikawa, M., Kato, T., and Takenishi, T. 1967. A novel method for phosphorylation of nucleosides to 5′‐nucleotides. Tetrahedron Lett. 50:5065‐5068. doi: 10.1016/S0040‐4039(01)89915‐9.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library