Chemical Modification of siRNA

Glen F. Deleavey1, Jonathan K. Watts2, Masad J. Damha1

1 McGill University, Montréal, Québec, Canada, 2 University of Texas Southwestern Medical Center, Dallas, Texas
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 16.3
DOI:  10.1002/0471142700.nc1603s39
Online Posting Date:  December, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The ability to manipulate the RNA interference (RNAi) machinery to specifically silence the expression of target genes could be a powerful therapeutic strategy. Since the discovery that RNAi can be triggered in mammalian cells by short double‐stranded RNAs (small interfering RNA, siRNA), there has been a tremendous push by researchers, from academia to big pharma, to move siRNAs into clinical application. The challenges facing siRNA therapeutics are significant. The inherent properties of siRNAs (polyanionic, vulnerable to nuclease cleavage) make clinical application difficult due to poor cellular uptake and rapid clearance. Side effects of siRNAs have also proven to be a further complication. Fortunately, numerous chemical modification strategies have been identified that allow many of these obstacles to be overcome. This unit will present an overview of (1) the chemical modifications available to the nucleic acid chemist for modifying siRNAs, (2) the application of chemical modifications to address specific therapeutic obstacles, and (3) the factors that must be considered when assessing the activity of modified siRNAs. Curr. Protoc. Nucleic Acid Chem. 39:16.3.1‐16.3.22. © 2009 by John Wiley & Sons, Inc.

Keywords: chemical modification; siRNA; oligonucleotide; immunostimulatory effects; off‐target effects

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Methods for Designing Modified siRNA
  • Incorporating Modified Nucleosides and Backbone Linkages
  • Applying Modifications to Address siRNA Shortcomings
  • Considerations When Assessing the Activity of Modified siRNAs
  • Conclusions
  • Acknowledgements
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Abe, N., Abe, H. and Ito, Y. 2007. Dumbbell‐shaped nanocircular RNAs for RNA interference. J. Am. Chem. Soc. 129:15108.
   Akinc, A., Zumbuehl, A., Goldberg, M., Leshchiner, E.S., Busini, V., Hossain, N., Bacallado, S.A., Nguyen, D.N., Fuller, J., Alvarez, R., Borodovsky, A., Borland, T., Constien, R., De Fougerolles, A., Dorkin, J.R., Narayanannair Jayaprakash, K., Jayaraman, M., John, M., Koteliansky, V., Manoharan, M., Nechev, L., Qin, J., Racie, T., Raitcheva, D., Rajeev, K.G., Sah, D.W.Y., Soutschek, J., Toudjarska, I., Vornlocher, H.‐P., Zimmermann, T.S., Langer, R., and Anderson, D.G. 2008. A combinatorial library of lipid‐like materials for delivery of RNAi therapeutics. Nat. Biotech. 26:561‐569.
   Allerson, C.R., Sioufi, N., Jarres, R., Prakash, T.P., Naik, N., Berdeja, A., Wanders, L., Griffey, R.H., Swayze, E.E., and Bhat, B. 2005. Fully 2′‐modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J. Med. Chem. 48:901‐904.
   Amarzguioui, M., Holen, T., Babaie, E., and Prydz, H. 2003. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31:589‐595.
   Amarzguioui, M., Lundberg, P., Cantin, E., Hagstrom, J., Behlke, M.A., and Rossi, J.J. 2006. Rational design and in vitro and in vivo delivery of Dicer substrate siRNA. Nat. Protoc. 1:508‐517.
   Banan, M. and Puri, N. 2004. The ins and outs of RNAi in mammalian cells. Curr. Pharm. Biotechnol. 5:441‐450.
   Berger, I., Tereshko, V., Ikeda, H., Marquez, V.E., and Egli, M. 1998. Crystal structures of B‐DNA with incorporated 2′‐deoxy‐2′‐fluoro‐arabino‐furanosyl thymines: Implications of conformational preorganization for duplex stability. Nucl. Acids Res. 26:2473‐2480.
   Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363‐366.
   Birmingham, A., Anderson, E.M., Reynolds, A., Ilsley‐Tyree, D., Leake, D., Fedorov, Y., Baskerville, S., Maksimova, E., Robinson, K., Karpilow, J., Marshall, W.S., and Khvorova, A. 2006. 3′ UTR seed matches, but not overall identity, are associated with RNAi off‐targets. Nat. Methods 3:199‐204.
   Blidner, R.A., Hammer, R.P., Lopez, M.J., Robinson, S.O., and Monroe, W.T. 2007. Fully 2′‐deoxy‐2′‐fluoro substituted nucleic acids induce RNA interference in mammalian cell culture. Chem. Biol. Drug Des. 70:113‐122.
   Boese, Q., Leake, D., Reynolds, A., Read, S., Scaringe, S.A., Marshall, W.S., Khvorova, A., David, R.E., and John, J.R. 2005. Mechanistic insights aid computational short interfering RNA design. Methods Enzymol. 392:73‐96.
   Bolcato‐Bellemin, A.L., Bonnet, M.E., Creusat, G., Erbacher, P., and Behr, J.P. 2007. Sticky overhangs enhance siRNA‐mediated gene silencing. Proc. Natl. Acad. Sci. U.S.A. 104:16050‐16055.
   Braasch, D.A., Jensen, S., Liu, Y., Kaur, K., Arar, K., White, M.A., and Corey, D.R. 2003. RNA interference in mammalian cells by chemically‐modified RNA. Biochemistry 42:7967‐7975.
   Braasch, D.A., Paroo, Z., Constantinescu, A., Ren, G., Oz, O.K., Mason, R.P., and Corey, D.R. 2004. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett. 14:1139‐1143.
   Bramsen, J.B., Laursen, M.B., Damgaard, C.K., Lena, S.W., Babu, B.R., Wengel, J., and Kjems, J. 2007. Improved silencing properties using small internally segmented interfering RNAs. Nucleic Acids Res. 35:5886‐5897.
   Bramsen, J.B., Laursen, M.B., Nielsen, A.F., Hansen, T.B., Bus, C., Langkjaer, N., Babu, B.R., Hojland, T., Abramov, M., Van Aerschot, A., Odadzic, D., Smicius, R., Haas, J., Andree, C., Barman, J., Wenska, M., Srivastava, P., Zhou, C., Honcharenko, D., Hess, S., Muller, E., Bobkov, G.V., Mikhailov, S.N., Fava, E., Meyer, T.F., Chattopadhyaya, J., Zerial, M., Engels, J.W., Herdewijn, P., Wengel, J., and Kjems, J. 2009. A large‐scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res. 37:2867‐2881.
   Brown, K.M., Chu, C.Y., and Rana, T.M. 2005. Target accessibility dictates the potency of human RISC. Nat. Struct. Mol. Biol. 12:469‐470.
   Brummelkamp, T.R., Bernards, R., and Agami, R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550‐553.
   Cekaite, L., Furset, G., Hovig, E., and Sioud, M. 2007. Gene expression analysis in blood cells in response to unmodified and 2′‐modified siRNAs reveals TLR‐dependent and independent effects. J. Mol. Biol. 365:90‐108.
   Chang, C.I., Yoo, J.W., Hong, S.W., Lee, S.E., Kang, H.S., Sun, X., Rogoff, H.A., Ban, C., Kim, S., Li, C.J., and Lee, D.‐K. 2009. Asymmetric shorter‐duplex siRNA structures trigger efficient gene silencing with reduced nonspecific effects. Mol. Ther. 17:725‐732.
   Chen, P.Y., Weinmann, L., Gaidatzis, D., Pei, Y., Zavolan, M., Tuschl, T., and Meister, G. 2008. Strand‐specific 5′‐O‐methylation of siRNA duplexes controls guide strand selection and targeting specificity. RNA 14:263‐274.
   Chen, X., Shen, L., and Wang, J.H. 2004. Poly‐2′‐DNP‐RNAs with enhanced efficacy for inhibiting cancer cell growth. Oligonucleotides 14:90‐99.
   Chiu, Y.‐L. and Rana, T.M. 2002. RNAi in human cells: Basic structural and functional features of small interfering RNA. Mol. Cell 10:549‐561.
   Chiu, Y.L. and Rana, T.M. 2003. siRNA function in RNAi: A chemical modification analysis. RNA 9:1034‐1048.
   Choung, S., Kim, Y.J., Kim, S., Park, H.‐O., and Choi, Y.‐C. 2006. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Biochem. Biophys. Res. Commun. 342:919‐927.
   Chu, C.‐Y. and Rana, T.M. 2008. Potent RNAi by short RNA triggers. RNA 14:1714‐1719.
   Corey, D.R. 2007. RNA learns from antisense. Nat. Chem. Biol. 3:8‐11.
   Czauderna, F., Fechtner, M., Dames, S., Aygun, H., Klippel, A., Pronk, G.J., Giese, K., and Kaufmann, J. 2003. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31:2705‐2716.
   Dahlgren, C., Zhang, H.‐Y., Du, Q., Grahn, M., Norstedt, G., Wahlestedt, C., and Liang, Z. 2008. Analysis of siRNA specificity on targets with double‐nucleotide mismatches. Nucleic Acids Res. 36:e53.
   Damha, M.J., Wilds, C.J., Noronha, A., Brukner, I., Borkow, G., Arion, D., and Parniak, M.A. 1998. Hybrids of RNA and arabinonucleic acids (ANA and 2′F‐ANA) are substrates of Ribonuclease H. J. Am. Chem. Soc. 120:12976‐12977.
   Dande, P., Prakash, T.P., Sioufi, N., Gaus, H., Jarres, R., Berdeja, A., Swayze, E.E., Griffey, R.H., and Bhat, B. 2006. Improving RNA interference in mammalian cells by 4′‐thio‐modified small interfering RNA (siRNA): Effect on siRNA activity and nuclease stability when used in combination with 2′‐O‐alkyl modifications. J. Med. Chem. 49:1624‐1634.
   David, V.M., Karin, B., Lucinda, S., Kristi, J., Jennifer, A.L., Brent, D., James, A.M., Chandra, V., Keith, B., Chris, S.S., Barry, A.P., and Shawn, Z. 2005. Activity of stabilized short interfering RNA in a mouse model of hepatitis B virus replication. Hepatology 41:1349‐1356.
   de Fougerolles, A., Vornlocher, H.P., Maraganore, J., and Lieberman, J. 2007. Interfering with disease: A progress report on siRNA‐based therapeutics. Nat. Rev. Drug Discov. 6:443‐453.
   Diebold, S.S., Massacrier, C., Akira, S., Paturel, C., Morel, Y., and Sousa, C.R. 2006. Nucleic acid agonists for Toll‐like receptor 7 are defined by the presence of uridine ribonucleotides. Eur. J. Immunol. 36:3256‐3267.
   Doench, J.G., Petersen, C.P., and Sharp, P.A. 2003. siRNAs can function as miRNAs. Genes Dev. 17:438‐442.
   Dorn, G., Patel, S., Wotherspoon, G., Hemmings‐Mieszczak, M., Barclay, J., Natt, F.J.C., Martin, P., Bevan, S., Fox, A., Ganju, P., Wishart, W., and Hall, J. 2004. siRNA relieves chronic neuropathic pain. Nucleic Acids Res. 32:e49.
   Dowler, T., Bergeron, D., Tedeschi, A.L., Paquet, L., Ferrari, N., and Damha, M.J. 2006. Improvements in siRNA properties mediated by 2′‐deoxy‐2′‐fluoro‐beta‐D‐arabinonucleic acid (FANA). Nucleic Acids Res. 34:1669‐1675.
   Eberle, F., Giessler, K., Deck, C., Heeg, K., Peter, M., Richert, C., and Dalpke, A.H. 2008. Modifications in small interfering RNA that separate immunostimulation from RNA interference. J. Immunol. 180:3229‐3237.
   Echeverri, C.J. and Perrimon, N. 2006. High‐throughput RNAi screening in cultured cells: A user's guide. Nat. Rev. Genet. 7:373‐384.
   Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 2001a. Duplexes of 21‐nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494‐498.
   Elbashir, S.M., Martinez, J., Patkaniowska, A., Lendeckel, W., and Tuschl, T. 2001b. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 20:6877‐6888.
   Elmen, J., Thonberg, H., Ljungberg, K., Frieden, M., Westergaard, M., Xu, Y., Wahren, B., Liang, Z., Urum, H., Koch, T., and Wahlestedt, C. 2005. Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res. 33:439‐447.
   Fedorov, Y., Anderson, E.M., Birmingham, A., Reynolds, A., Karpilow, J., Robinson, K., Leake, D., Marshall, W.S., and Khvorova, A. 2006. Off‐target effects by siRNA can induce toxic phenotype. RNA 12:1188‐1196.
   Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. 1998. Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 391:806‐811.
   Fisher, M., Abramov, M., Van Aerschot, A., Xu, D., Juliano, R.L., and Herdewijn, P. 2007. Inhibition of MDR1 expression with altritol‐modified siRNAs. Nucleic Acids Res. 35:1064‐1074.
   Fisher, M., Abramov, M., Van Aerschot, A., Rozenski, J., Dixit, V., Juliano, R.L., and Herdewijn, P. 2009. Biological effects of hexitol and altritol‐modified siRNAs targeting B‐Raf. Eur. J. Pharmacol. 606:38‐44.
   Geary, R.S., Yu, R.Z., and Levin, A.A. 2001. Pharmacokinetics of phosphorothioate antisense oligodeoxynucleotides. Curr. Opin. Investig. Drugs 2:562‐573.
   Gredell, J.A., Berger, A.K., and Walton, S.P. 2008. Impact of target mRNA structure on siRNA silencing efficiency: A large‐scale study. Biotech. and Bioeng. 100:744‐755.
   Hall, A.H.S., Wan, J., Shaughnessy, E.E., Shaw, B.R., and Alexander, K.A. 2004. RNA interference using boranophosphate siRNAs: structure‐activity relationships. Nucleic Acids Res. 32:5991‐6000.
   Hamada, M., Ohtsuka, T., Kawaida, R., Koizumi, M., Morita, K., Furukawa, H., Imanishi, T., Miyagishi, M., and Taira, K. 2002. Effects on RNA interference in gene expression (RNAi) in cultured mammalian cells of mismatches and the introduction of chemical modifications at the 3′‐ends of siRNAs. Antisense Nucleic Acid Drug Dev. 12:301‐309.
   Harborth, J., Elbashir, S.M., Vandenburgh, K., Manninga, H., Scaringe, S.A., Weber, K., and Tuschl, T. 2003. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Antisense Nucleic Acid Drug Dev. 13:83‐105.
   Hoerter, J.A.H. and Walter, N.G. 2007. Chemical modification resolves the asymmetry of siRNA strand degradation in human blood serum. RNA 13:1887‐1893.
   Holen, T., Amarzguioui, M., Wiiger, M.T., Babaie, E., and Prydz, H. 2002. Positional effects of short interfering RNAs targeting the human coagulation trigger Tissue Factor. Nucleic Acids Res. 30:1757‐1766.
   Holen, T., Amarzguioui, M., Babaie, E., and Prydz, H. 2003. Similar behaviour of single‐strand and double‐strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res. 31:2401‐2407.
   Hornung, V., Guenthner‐Biller, M., Bourquin, C., Ablasser, A., Schlee, M., Uematsu, S., Noronha, A., Manoharan, M., Akira, S., De Fougerolles, A., Endres, S., and Hartmann, G. 2005. Sequence‐specific potent induction of IFN‐alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat. Med. 11:263‐270.
   Hornung, V., Ellegast, J., Kim, S., Brzozka, K., Jung, A., Kato, H., Poeck, H., Akira, S., Conzelmann, K.‐K., Schlee, M., Endres, S., and Hartmann, G. 2006. 5′‐Triphosphate RNA is the ligand for RIG‐I. Science 314:994‐997.
   Hoshika, S., Minakawa, N., Kamiya, H., Harashima, H., and Matsuda, A. 2005. RNA interference induced by siRNAs modified with 4′‐thioribonucleosides in cultured mammalian cells. FEBS Lett. 579:3115‐3118.
   Hoshika, S., Minakawa, N., Shionoya, A., Imada, K., Ogawa, N., and Matsuda, A. 2007. Study of modification pattern‐RNAi activity relationships by using siRNAs modified with 4′‐thioribonucleosides. ChemBioChem 8:2133‐2138.
   Huesken, D., Lange, J., Mickanin, C., Weiler, J., Asselbergs, F., Warner, J., Meloon, B., Engel, S., Rosenberg, A., Cohen, D., Labow, M., Reinhardt, M., Natt, F., and Hall, J. 2005. Design of a genome‐wide siRNA library using an artificial neural network. Nat. Biotech. 23:995‐1001.
   Ikeda, H., Fernandez, R., Wilk, A., Barchi, J.J., Jr., Huang, X., and Marquez, V.E. 1998. The effect of two antipodal fluorine‐induced sugar puckers on the conformation and stability of the Dickerson‐Drew dodecamer duplex [d(CGCGAATTCGCG)]2. Nucleic Acids Res. 26:2237‐2244.
   Ittig, D., Schümperli, D., and Leumann, C.J. 2008. Tc‐DNA modified siRNA. Nucleic Acids Symp. Ser. 52:501‐502.
   Iwase, R., Toyama, T., and Nishimori, K. 2007. Solid‐phase synthesis of modified RNAs containing amide‐linked oligoribonucleosides at their 3′‐end and their application to siRNA. Nucleosides Nucleotides Nucleic Acids 26:1451‐1454.
   Jackson, A.L., Bartz, S.R., Schelter, J., Kobayashi, S.V., Burchard, J., Mao, M., Li, B., Cavet, G., and Linsley, P.S. 2003. Expression profiling reveals off‐target gene regulation by RNAi. Nat. Biotechnol. 21:635‐637.
   Jackson, A.L., Burchard, J., Schelter, J., Chau, B.N., Cleary, M., Lim, L., and Linsley, P.S. 2006a. Widespread siRNA “off‐target” transcript silencing mediated by seed region sequence complementarity. RNA 12:1179‐1187.
   Jackson, A.L., Burchard, J., Leake, D., Reynolds, A., Schelter, J., Guo, J., Johnson, J.M., Lim, L., Karpilow, J., Nichols, K., Marshall, W., Khvorova, A., and Linsley, P.S. 2006b. Position‐specific chemical modification of siRNAs reduces “off‐target” transcript silencing. RNA 12:1197‐1205.
   Jinek, M. and Doudna, J.A. 2009. A three‐dimensional view of the molecular machinery of RNA interference. Nature 457:405‐412.
   Judge, A.D. and Maclachlan, I. 2008. Overcoming the innate immune response to small interfering RNA. Hum. Gene Ther. 19:111‐124.
   Judge, A.D., Sood, V., Shaw, J.R., Fang, D., Mcclintock, K., and Maclachlan, I. 2005. Sequence‐dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23:457‐462.
   Judge, A.D., Bola, G., Lee, A.C., and Maclachlan, I. 2006. Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol. Ther. 13:494‐505.
   Judge, A.D., Robbins, M., Tavakoli, I., Levi, J., Hu, L., Fronda, A., Ambegia, E., McClintock, K., and MacLachlan, I. 2009. Confirming the RNAi‐mediated mechanism of action of siRNA‐based cancer therapeutics in mice. J. Clin. Invest. 119:661‐673.
   Karikó, K., Buckstein, M., Ni, H., and Weissman, D. 2005. Suppression of RNA recognition by toll‐like receptors: The impact of nucleoside modification and the evolutionary origin of RNA. Immunity 23:165‐175.
   Katoh, T. and Suzuki, T. 2007. Specific residues at every third position of siRNA shape its efficient RNAi activity. Nucl. Acids Res. 35:e27.
   Kawasaki, A.M., Casper, M.D., Freier, S.M., Lesnik, E.A., Zounes, M.C., Cummins, L.L., Gonzalez, C., and Cook, P.D. 1993. Uniformly modified 2′‐deoxy‐2′‐fluoro‐phosphorothioate oligonucleotides as nuclease‐resistant antisense compounds with high affinity and specificity for RNA targets. J. Med. Chem. 36:831‐841.
   Kennedy, S., Wang, D., and Ruvkun, G. 2004. A conserved siRNA‐degrading RNase negatively regulates RNA interference in C. elegans. Nature 427:645‐649.
   Khvorova, A., Reynolds, A., and Jayasena, S.D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209‐216.
   Kim, D.‐H., Longo, M., Han, Y., Lundberg, P., Cantin, E., and Rossi, J.J. 2004. Interferon induction by siRNAs and ssRNAs synthesized by phage polymerase. Nat. Biotechnol. 22:321‐325.
   Kim, D.‐H., Behlke, M.A., Rose, S.D., Chang, M.‐S., Choi, S., and Rossi, J.J. 2005. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat. Biotechnol. 23:222‐226.
   Kittler, R., Pelletier, L., Ma, C., Poser, I., Fischer, S., Hyman, A.A., and Buchholz, F. 2005. RNA interference rescue by bacterial artificial chromosome transgenesis in mammalian tissue culture cells. Proc. Natl. Acad. Sci. U.S.A. 102:2396‐2401.
   Kleinman, M.E., Yamada, K., Takeda, A., Chandrasekaran, V., Nozaki, M., Baffi, J.Z., Albuquerque, R.J.C., Yamasaki, S., Itaya, M., Pan, Y., Appukuttan, B., Gibbs, D., Yang, Z., Kariko, K., Ambati, B.K., Wilgus, T.A., Dipietro, L.A., Sakurai, E., Zhang, K., Smith, J.R., Taylor, E.W., and Ambati, J. 2008. Sequence‐ and target‐independent angiogenesis suppression by siRNA via TLR3. Nature 452:591‐597.
   Koller, E., Propp, S., Murray, H., Lima, W., Bhat, B., Prakash, T.P., Allerson, C.R., Swayze, E.E., Marcusson, E.G., and Dean, N.M. 2006. Competition for RISC binding predicts in vitro potency of siRNA. Nucleic Acids Res. 34:4467‐4476.
   Kraynack, B.A. and Baker, B.F. 2006. Small interfering RNAs containing full 2′‐O‐methylribonucleotide‐modified sense strands display Argonaute2/eIF2C2‐dependent activity. RNA 12:163‐176.
   Kubo, T., Zhelev, Z., Ohba, H., and Bakalova, R. 2007. Modified 27‐nt dsRNAs with dramatically enhanced stability in serum and long‐term RNAi activity. Oligonucleotides 17:445‐464.
   Lackey, J.G., Sabatino, D., and Damha, M.J. 2007. Solid‐phase synthesis and on‐column deprotection of RNA from 2′‐ (and 3′‐) O‐levulinated (Lv) ribonucleoside monomers. Org. Lett. 9:789‐792.
   Layzer, J.M., Mccaffrey, A.P., Tanner, A.K., Huang, Z., Kay, M.A., and Sullenger, B.A. 2004. In vivo activity of nuclease‐resistant siRNAs. RNA 10:766‐771.
   Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.‐J., Ehsani, A., Salvaterra, P., and Rossi, J. 2002. Expression of small interfering RNAs targeted against HIV‐1 rev transcripts in human cells. Nat. Biotechnol. 20:500‐505.
   Leuschner, P.J.F., Ameres, S.L., Kueng, S., and Martinez, J. 2006. Cleavage of the siRNA passenger strand during RISC assembly in human cells. Embo Reports 7:314‐320.
   Li, Z.‐S., Qiao, R.‐P., Du, Q., Yang, Z.‐J., Zhang, L.‐R., Zhang, P.‐Z., Liang, Z.‐C., and Zhang, L.‐H. 2007. Studies on aminoisonucleoside modified siRNAs: Stability and silencing activity. Bioconjugate Chem. 18:1017‐1024.
   Lim, L.P., Lau, N.C., Garrett‐Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M. 2005. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433:769‐773.
   Lingel, A., Simon, B., Izaurralde, E., and Sattler, M. 2003. Structure and nucleic‐acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 426:465‐469.
   Liu, L., Botos, I., Wang, Y., Leonard, J.N., Shiloach, J., Segal, D.M., and Davies, D.R. 2008. Structural basis of toll‐like receptor 3 signaling with double‐stranded RNA. Science 320:379‐381.
   Lorenz, C., Hadwiger, P., John, M., Vornlocher, H.‐P., and Unverzagt, C. 2004. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg. Med. Chem. Lett. 14:4975‐4977.
   Ma, J.‐B., Ye, K., and Patel, D.J. 2004. Structural basis for overhang‐specific small interfering RNA recognition by the PAZ domain. Nature 429:318‐322.
   Manoharan, M. and Kallanthottathil, R.G. 2007. Utilizing chemistry to harness RNA interference pathways for therapeutics: Chemically modified siRNAs and antagomirs. In Antisense Drug Technology: Principles, Strategies, and Applications, 2nd ed. (Crooke, S.T., ed.), pp. 437‐464. CRC Press, New York.
   Manoharan, M. 2006. RNA interference and chemical modifications: Conformational and stereochemical aspects. Abstracts of Papers, 231st ACS National Meeting, Atlanta, USA, March 26‐30.
   Marques, J.T. and Williams, B.R.G. 2005. Activation of the mammalian immune system by siRNAs. Nat. Biotechnol. 23:1399‐1405.
   Marques, J.T., Devosse, T., Wang, D., Zamanian‐Daryoush, M., Serbinowski, P., Hartmann, R., Fujita, T., Behlke, M.A., and Williams, B.R.G. 2006. A structural basis for discriminating between self and nonself double‐stranded RNAs in mammalian cells. Nat. Biotech. 24:559‐565.
   Martin, A.R., Lavergne, T., Vasseur, J.‐J., and Debart, F. 2009. Assessment of new 2′‐O‐acetalester protecting groups for regular RNA synthesis and original 2′‐modified proRNA. Bioorg. Med. Chem. Lett. 19:4046‐4049.
   Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. 2002. Single‐stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563‐574.
   Minks, M.A., West, D.K., Benvin, S., and Baglioni, C. 1979. Structural requirements of double‐stranded RNA for the activation of 2′,5′‐oligo(A) polymerase and protein kinase of interferon‐treated HeLa cells. J. Biol. Chem. 254:10180‐10183.
   Monia, B., Lesnik, E., Gonzalez, C., Lima, W., Mcgee, D., Guinosso, C., Kawasaki, A., Cook, P., and Freier, S. 1993. Evaluation of 2′‐modified oligonucleotides containing 2′‐deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem. 268:14514‐14522.
   Mook, O.R., Baas, F., De Wissel, M.B., and Fluiter, K. 2007. Evaluation of locked nucleic acid‐modified small interfering RNA in vitro and in vivo. Mol. Cancer Therap. 6:833‐843.
   Morrissey, D.V., Lockridge, J.A., Shaw, L., Blanchard, K., Jensen, K., Breen, W., Hartsough, K., Machemer, L., Radka, S., Jadhav, V., Vaish, N., Zinnen, S., Vargeese, C., Bowman, K., Shaffer, C.S., Jeffs, L.B., Judge, A., Maclachlan, I., and Polisky, B. 2005. Potent and persistent in vivo anti‐HBV activity of chemically modified siRNAs. Nat. Biotech. 23:1002‐1007.
   Nauwelaerts, K., Fisher, M., Froeyen, M., Lescrinier, E., Van Aerschot, A., Xu, D., Delong, R., Kang, H., Juliano, R.L., and Herdewijn, P. 2007. Structural characterization and biological evaluation of small interfering RNAs containing cyclohexenyl nucleosides. J. Am. Chem. Soc. 129:9340.
   Nykanen, A., Haley, B., and Zamore, P.D. 2001. ATP requirements and small interfering RNA structure in the RNA interference pathway. Cell 107:309‐321.
   Obika, S. 2004. Development of bridged nucleic acid analogues for antigene technology. Chem. Pharm. Bull. 52:1399‐1404.
   Odadzic, D., Bramsen, J.B., Smicius, R., Bus, C., Kjems, J.R., and Engels, J.W. 2008. Synthesis of 2′‐O‐modified adenosine building blocks and application for RNA interference. Bioorg. Med. Chem. 16:518‐529.
   Parrish, S., Fleenor, J., Xu, S., Mello, C., and Fire, A. 2000. Functional anatomy of a dsRNA trigger: Differential requirement for the two trigger strands in RNA interference. Mol. Cell 6:1077‐1087.
   Pei, Y. and Tuschl, T. 2006. On the art of identifying effective and specific siRNAs. Nat. Methods 3:670‐676.
   Petersen, M. and Wengel, J. 2003. LNA: A versatile tool for therapeutics and genomics. Trends Biotechnol. 21:74‐81.
   Pirher, N., Ivicak, K., Pohar, J., Bencina, M., and Jerala, R. 2008. A second binding site for double‐stranded RNA in TLR3 and consequences for interferon activation. Nat. Struct. Mol. Biol. 15:761‐763.
   Poeck, H., Besch, R., Maihoefer, C., Renn, M., Tormo, D., Morskaya, S.S., Kirschnek, S., Gaffal, E., Landsberg, J., Hellmuth, J., Schmidt, A., Anz, D., Bscheider, M., Schwerd, T., Berking, C., Bourquin, C., Kalinke, U., Kremmer, E., Kato, H., Akira, S., Meyers, R., Hacker, G., Neuenhahn, M., Busch, D., Ruland, J., Rothenfusser, S., Prinz, M., Hornung, V., Endres, S., Tuting, T., and Hartmann, G. 2008. 5′‐triphosphate‐siRNA: Turning gene silencing and Rig‐I activation against melanoma. Nat. Med. 14:1256‐1263.
   Potenza, N., Moggio, L., Milano, G., Salvatore, V., Di Blasio, B., Russo, A., and Messere, A. 2008. RNA interference in mammalian cells by RNA‐3′‐PNA chimeras. Int. J. of Mol. Sci. 9:299‐315.
   Prakash, T.P., Allerson, C.R., Dande, P., Vickers, T.A., Sioufi, N., Jarres, R., Baker, B.F., Swayze, E.E., Griffey, R.H., and Bhat, B. 2005. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48:4247.
   Prakash, T.P., Kraynack, B., Baker, B.F., Swayze, E.E., and Bhat, B. 2006. RNA interference by 2′,5′‐linked nucleic acid duplexes in mammalian cells. Bioorg. Med. Chem. Lett. 16:3238‐3240.
   Rana, T.M. 2007. Illuminating the silence: Understanding the structure and function of small RNAs. Nat. Rev. Mol. Cell Biol. 8:23‐36.
   Reynolds, A., Anderson, E.M., Vermeulen, A., Fedorov, Y., Robinson, K., Leake, D., Karpilow, J., Marshall, W.S., and Khvorova, A. 2006. Induction of the interferon response by siRNA is cell type‐ and duplex length‐dependent. RNA 12:988‐993.
   Robbins, M., Judge, A., Liang, L., Mcclintock, K., Yaworski, E., and Maclachlan, I. 2007. 2′‐O‐methyl‐modified RNAs act as TLR7 antagonists. Mol. Ther. 15:1663‐1669.
   Robbins, M., Judge, A., Ambegia, E., Choi, C., Yaworski, E., Palmer, L., Mcclintock, K., and Maclachlan, I. 2008. Misinterpreting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum. Gene Ther. 19:991‐999.
   Robbins, M., Judge, A., and Maclachlan, I. 2009. siRNA and innate immunity. Oligonucleotides 19:89‐102.
   Rosenberg, I., Soler, J.F., Tocik, Z., Ren, W.Y., Ciszewski, L.A., Kois, P., Pankiewicz, K.W., Spassova, M., and Watanabe, K.A. 1993. Synthesis of oligodeoxynucleotides containing the C‐nucleoside and 2′‐deoxy‐2′‐fluoro‐ara‐nucleoside moieties by the H‐phosphonate method. Nucleosides Nucleotides 12:381‐401.
   Rudnick, S.I., Swaminathan, J., Sumaroka, M., Liebhaber, S., and Gewirtz, A.M. 2008. Effects of local mRNA structure on posttranscriptional gene silencing. Proc. Natl. Acad. Sci. U.S.A. 105:13787‐13792.
   Saneyoshi, H., Seio, K., and Sekine, M. 2005. A general method for the synthesis of 2′‐O‐cyanoethylated oligoribonucleotides having promising hybridization affinity for DNA and RNA and enhanced nuclease resistance. J. Org. Chem. 70:10453‐10460.
   Sano, M., Sierant, M., Miyagishi, M., Nakanishi, M., Takagi, Y., and Sutou, S. 2008. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Nucleic Acids Res. 36:5812‐5821.
   Schlee, M., Hornung, V., and Hartmann, G. 2006. siRNA and isRNA: Two edges of one sword. Mol. Ther. 14:463‐470.
   Schwarz, D.S., Hutvágner, G., Haley, B., and Zamore, P.D. 2002. Evidence that siRNAs function as guides, not primers, in the drosophila and human RNAi pathways. Mol. Cell 10:537‐548.
   Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N., and Zamore, P.D. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115:199‐208.
   Schwartz, J.C., Younger, S.T., Nguyen, N.‐B., Hardy, D.B., Monia, B.P., Corey, D.R., and Janowski, B.A. 2008. Antisense transcripts are targets for activating small RNAs. Nat. Struct. Mol. Biol. 15:842‐848.
   Shah, S. and Friedman, S.H. 2008. An ESI‐MS method for characterization of native and modified oligonucleotides used for RNA interference and other biological applications. Nat. Protocols 3:351‐356.
   Shan, G., Li, Y., Zhang, J., Li, W., Szulwach, K.E., Duan, R., Faghihi, M.A., Khalil, A.M., Lu, L., Paroo, Z., Chan, A.W.S., Shi, Z., Liu, Q., Wahlestedt, C., He, C., and Jin, P. 2008. A small molecule enhances RNA interference and promotes microRNA processing. Nat. Biotechnol. 26:933‐940.
   Sheehan, D., Lunstad, B., Yamada, C.M., Stell, B.G., Caruthers, M.H., and Dellinger, D.J. 2003. Biochemical properties of phosphonoacetate and thiophosphonoacetate oligodeoxyribonucleotides. Nucleic Acids Res 31:4109‐4118.
   Siolas, D., Lerner, C., Burchard, J., Ge, W., Linsley, P.S., Paddison, P.J., Hannon, G.J., and Cleary, M.A. 2005. Synthetic shRNAs as potent RNAi triggers. Nat. Biotechnol. 23:227‐231.
   Sipa, K., Sochacka, E., Kazmierczak‐Baranska, J., Maszewska, M., Janicka, M., Nowak, G., and Nawrot, B. 2007. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA 13:1301‐1316.
   Sokol, D.L., Zhang, X., Lu, P., and Gewirtz, A.M. 1998. Real time detection of DNA‐RNA hybridization in living cells. Natl. Acad. Sci. U.S.A. 95:11538‐11543.
   Somoza, A., Silverman, A.P., Miller, R.M., Chelliserrykattil, J., and Kool, E.T. 2008. Steric effects in RNA interference: Probing the influence of nucleobase size and shape. Chem. Eur. J. 14:7978‐7987.
   Song, J.‐J., Liu, J., Tolia, N.H., Schneiderman, J., Smith, S.K., Martienssen, R.A., Hannon, G.J. and Joshua‐Tor, L. 2003. The crystal structure of the Argonaute2 PAZ domain reveals an RNA binding motif in RNAi effector complexes. Nat. Struct. Mol. Biol. 10:1026‐1032.
   Soutschek, J., Akinc, A., Bramlage, B., Charisse, K., Constien, R., Donoghue, M., Elbashir, S., Geick, A., Hadwiger, P., Harborth, J., John, M., Kesavan, V., Lavine, G., Pandey, R.K., Racie, T., Rajeev, K.G., Rohl, I., Toudjarska, I., Wang, G., Wuschko, S., Bumcrot, D., Koteliansky, V., Limmer, S., Manoharan, M., and Vornlocher, H.‐P. 2004. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432:173‐178.
   Sun, X., Rogoff, H.A., and Li, C.J. 2008. Asymmetric RNA duplexes mediate RNA interference in mammalian cells. Nat. Biotechnol. 26:1379‐1382.
   Takabatake, Y., Isaka, Y., Mizui, M., Kawachi, H., Takahara, S., and Imai, E. 2007. Chemically modified siRNA prolonged RNA interference in renal disease. Biochem. Biophys. Res. Commun. 363:432‐437.
   Takeda, K. and Akira, S. 2005. Toll‐like receptors in innate immunity. Int. Immunol. 17:1‐14.
   Terrazas, M. and Kool, E.T. 2009. RNA major groove modifications improve siRNA stability and biological activity. Nucleic Acids Res. 37:346‐353.
   Turner, J.J., Jones, S.W., Moschos, S.A., Lindsay, M.A., and Gait, M.J. 2007. MALDI‐TOF mass spectral analysis of siRNA degradation in serum confirms an RNAse A‐like activity. Mol. BioSys. 3:43‐50.
   Ueno, Y., Hirai, M., Yoshikawa, K., Kitamura, Y., Hirata, Y., Kiuchi, K., and Kitade, Y. 2008. Synthesis and properties of siRNAs containing 5′‐amino‐2′,5′‐dideoxy‐2′‐alpha‐fluororibonucleosides. Tetrahedron 64:11328‐11334.
   Ueno, Y., Watanabe, Y., Shibata, A., Yoshikawa, K., Takano, T., Kohara, M., and Kitade, Y. 2009. Synthesis of nuclease‐resistant siRNAs possessing universal overhangs. Bioorg. Med. Chem. 17:1974‐1981.
   Ui‐Tei, K., Naito, Y., Zenno, S., Nishi, K., Yamato, K., Takahashi, F., Juni, A., and Saigo, K. 2008. Functional dissection of siRNA sequence by systematic DNA substitution: Modified siRNA with a DNA seed arm is a powerful tool for mammalian gene silencing with significantly reduced off‐target effect. Nucleic Acids Res. 36:2136‐2151.
   Watts, J.K., Choubdar, N., Sadalapure, K., Robert, F., Wahba, A.S., Pelletier, J., Mario Pinto, B., and Damha, M.J. 2007. 2′‐Fluoro‐4′‐thioarabino‐modified oligonucleotides: Conformational switches linked to siRNA activity. Nucleic Acids Res. 35:1441‐1451.
   Watts, J.K., Deleavey, G.F., and Damha, M.J. 2008. Chemically modified siRNA: Tools and applications. Drug Disc. Today 13:842‐855.
   Watts, J.K., Katolik, A., Viladoms, J., and Damha, M.J. 2009. Studies on the hydrolytic stability of 2′‐fluoroarabinonucleic acid (2′F‐ANA). Org. Biomol. Chem. 7:1904‐1910.
   Weitzer, S. and Martinez, J. 2007. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 447:222‐226.
   Wilds, C.J. and Damha, M.J. 2000. 2′‐Deoxy‐2′‐fluoro‐beta‐D‐arabinonucleosides and oligonucleotides (2′F‐ANA): Synthesis and physicochemical studies. Nucleic Acids Res. 28:3625‐3635.
   Wu, Y., Navarro, F., Lal, A., Basar, E., Pandey, R.K., Manoharan, M., Feng, Y., Lee, S.J., Lieberman, J., and Palliser, D. 2009. Durable protection from herpes simplex virus‐2 transmission following intravaginal application of siRNAs targeting both a viral and host gene. Cell Host & Microbe 5:84‐94.
   Xia, J., Noronha, A., Toudjarska, I., Li, F., Akinc, A., Braich, R., Frank‐Kamenetsky, M., Rajeev, K.G., Egli, M., and Manoharan, M. 2006. Gene silencing activity of siRNAs with a ribo‐difluorotoluyl nucleotide. ACS Chem. Biol. 1:176.
   Yamada, C.M., Dellinger, D.J., and Caruthers, M.H. 2007. Synthesis and biological activity of phosphonocarboxylate DNA. Nucleosides Nucleotides Nucleic Acids 26:539‐546.
   Yan, K.S., Yan, S., Farooq, A., Han, A., Zeng, L., and Zhou, M.M. 2003. Structure and conserved RNA binding of the PAZ domain. Nature 426:469‐474.
   Yan, Z., Philip, T., Chen, I.W., Michael, B., and Jerome, H. 2008. Metabolite identification of small interfering RNA duplex by high‐resolution accurate mass spectrometry. Rapid Commun. Mass Spectrom. 22:1871‐1881.
   Yuan, B., Latek, R., Hossbach, M., Tuschl, T., and Lewitter, F. 2004. siRNA selection server: An automated siRNA oligonucleotide prediction server. Nucleic Acids Res. 32:W130‐W134.
   Zamanian‐Daryoush, M., Marques, J.T., Gantier, M.P., Behlke, M.A., John, M., Rayman, P., Finke, J., and Williams, B.R.G. 2008. Determinants of cytokine induction by small interfering RNA in human peripheral blood mononuclear cells. J. Interf. Cytok. Res. 28:221‐233.
   Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P. 2000. RNAi: Double‐stranded RNA directs the ATP‐dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25‐33.
   Zeng, Y., Yi, R., and Cullen, B.R. 2003. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl. Acad. Sci. U.S.A. 100:9779‐9784.
   Zhang, N., Tan, C., Cai, P., Zhang, P., Zhao, Y., and Jiang, Y. 2009. RNA interference in mammalian cells by siRNAs modified with morpholino nucleoside analogues. Bioorg. Med. Chem. 17:2441‐2446.
PDF or HTML at Wiley Online Library