Analysis of Multidimensional G‐Quadruplex Melting Curves

Robert D. Gray1, Jonathan B. Chaires1

1 James Graham Brown Cancer Center, University of Louisville, Louisville, Kentucky
Publication Name:  Current Protocols in Nucleic Acid Chemistry
Unit Number:  Unit 17.4
DOI:  10.1002/0471142700.nc1704s45
Online Posting Date:  June, 2011
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Multidimensional “3D” melting curves for G‐quadruplexes are obtained by recording whole spectra (absorbance, CD, fluorescence) as a function of temperature, rather than the common approach of recording the spectral response to temperature at a single wavelength. 3D melting curves are richer in information, and can be used to enumerate the number of significant species and intermediate states required to properly analyze the thermal denaturation reaction to obtain thermodynamic information. This unit describes the application of the method of singular value decomposition to the analysis of 3D melting data obtained for G‐quadruplex structures, and how the results of such an analysis can be used to provide a more complete characterization of the mechanism of quadruplex unfolding. Curr. Protoc. Nucleic Acid Chem. 45:17.4.1‐17.4.16. © 2011 by John Wiley & Sons, Inc.

Keywords: G‐quadruplex; thermodynamics; spectroscopy; thermal melting; singular value decomposition

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Overview of SVD Analysis
  • Basic Protocol 1: Analysis of Multidimensional Melting Data
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Cattell, R.B. 1966. The scree test for the number of factors. Multivariate Behav. Res. 1:245‐276.
   DeSa, R.J. and Matheson, I.B. 2004. A practical approach to interpretation of singular value decomposition results. Methods Enzymol. 384:1‐8.
   Gralla, J. and Crothers, D.M. 1973. Free energy of imperfect nucleic acid helices. II. Small hairpin loops. J. Mol. Biol. 73:497‐511.
   Greenfield, N.J. 2006. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat. Protoc. 1:2527‐2535.
   Haq, I., Chowdhry, B.Z., and Chaires, J.B. 1997. Singular value decomposition of 3‐D DNA melting curves reveals complexity in the melting process. Eur. Biophys. J. 26:419‐426.
   Hendler, R.W. and Shrager, R.I. 1994. Deconvolutions based on singular value decomposition and the pseudoinverse: A guide for beginners. J. Biochem. Biophys. Methods 28:1‐33.
   Henry, R.W. and Hofrichter, J. 1992. Singular value decomposition: application to analysis of experimental data. In Methods in Enzymology, vol. 210. (L. Brand and M.L. Johnson, eds.) pp. 129‐191. Academic Press, New York.
   John, D.M. and Weeks, K.M. 2000. van't Hoff enthalpies without baselines. Protein Sci. 9:1416‐1419.
   Keesey, R.L. and Ryan, M.D. 1999. Use of evolutionary factor analysis in the spectroelectrochemistry of Escherichia coli sulfite reductase hemoprotein and a Mo/Fe/S cluster. Anal. Chem. 71:1744‐1752.
   Lumry, R. and Biltonen, R. 1966. Validity of the “two‐state” hypothesis for conformational transitions of proteins. Biopolymers 4:917‐944.
   Mergny, J.‐L. and Lacroix, L. 2009. UV melting of G‐quadruplexes. Curr. Protoc. Nucleic Acid Chem. 37:17.11.11‐17.11.15.
   Nagatoishi, S., Nojima, T., Galezowska, E., Gluszynska, A., Juskowiak, B., and Takenaka, S. 2007. Fluorescence energy transfer probes based on the guanine quadruplex formation for the fluorometric detection of potassium ion. Anal. Chim Acta 581:125‐131.
   Wallimann, P., Kennedy, R.J., Miller, J.S., Shalongo, W., and Kemp, D.S. 2003. Dual wavelength parametric test of two‐state models for circular dichroism spectra of helical polypeptides: Anomalous dichroic properties of alanine‐rich peptides. J. Am. Chem. Soc. 125:1203‐1220.
   Wang, Y. and Patel, D.J. 1993. Solution structure of the human telomeric repeat d[AG3(T2AG3)3] G‐tetraplex. Structure 1:263‐282.
PDF or HTML at Wiley Online Library