Evolution of Neurotoxins: From Research Modalities to Clinical Realities

Richard M. Kostrzewa1

1 Department of Pharmacology, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 1.18
DOI:  10.1002/0471142301.ns0118s46
Online Posting Date:  January, 2009
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

In the 1950s, the discovery of anti‐nerve growth factor, an immunotoxin stunting sympathetic neural development, signaled the advent of neurotoxins as research modalities. Other selective neurotoxins were discovered in rapid succession. In the 1960s, 6‐hydroxydopamine and 6‐hydroxydopa were shown to destroy noradrenergic and dopaminergic nerves. Excitotoxins (glutamate, aspartate, and analogs) were discovered in the 1970s. DSP‐4 [N‐(2‐chloroethyl)‐N‐ethyl‐2‐bromobenzylamine] proved to be selective for noradrenergic destruction, while 5,6‐ and 5,7‐dihydroxytryptamines were relatively selective for serotonin neurons. Additional neurotoxins were discovered, but it was MPTP (1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine) that predominated neurotoxicity research in the 1980s. Eventually, Clostridium botulinum neurotoxin (BoNT), discovered as a “poisonous” principle in the late 1800s, resurfaced in purified and standardized forms as a clinically useful drug. Neurotoxins represent chemical tools, useful not only for discerning neuronal mechanisms and animal modeling of neurological disorders, but also for their use in medicine and potential as treatments for medical disorders. This unit reviews the early discovery of neurotoxins, describes categories of neurotoxins, and finally characterizes their usefulness—first as research tools, and eventually as clinical therapeutic agents. Curr. Protoc. Neurosci. 46:1.18.1‐1.18.10. © 2009 by John Wiley & Sons, Inc.

Keywords: 6‐hydroxydopamine; MPTP; glutamate; botulinum neurotoxin; DSP‐4; excitotoxins

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Neurotoxins as Research Tools
  • Discovery of Selective Neurotoxins
  • Development and Categorization of Other Neurotoxins—Research Focus
  • Endogenous Neurotoxins and Neuroprotectants
  • Confusion on the Definition of a Neurotoxin
  • Neurotoxins as Therapeutics
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Antkiewicz‐Michaluk, L., Romańska, I., Papla, I., Michaluk, J., Bakalarz, M., Vetulani, J., Krygowska‐Wajs, A., and Szczudlik, A. 2000. Neurochemical changes induced by acute and chronic administration of 1,2,3,4‐tetrahydroisoquinoline and salsolinol in dopaminergic structures of rat brain. Neuroscience 96:59‐64.
   Antkiewicz‐Michaluk, L., Karolewicz, B., Romańska, I., Michaluk, J., Bojarski, A.J., and Vetulani, J. 2003. 1‐Methyl‐1,2,3,4‐tetrahydroisoquinoline protects against rotenone‐induced mortality and biochemical changes in rat brain. Eur. J. Pharmacol. 466:263‐269.
   Antkiewicz‐Michaluk, L., Lazarewicz, J.W., Patsenka, A., Kajta, M., Zieminska, E., Salinska, E., Wasik, A., Golembiowska, K., and Vetulani, J. 2006. The mechanism of 1,2,3,4‐tetrahydroisoquinolines neuroprotection: The importance of free radicals scavenging properties and inhibition of glutamate‐induced excitotoxicity. J. Neurochem. 97:846‐856.
   Arundine, M. and Tymianski, M. 2004. Molecular mechanisms of glutamate‐dependent neurodegeneration in ischemia and traumatic brain injury. Cell. Mol. Life Sci. 61:657‐68.
   Baumgarten, H.G. and Lachenmayer, L. 1972. 5,7‐Dihydroxytryptamine: Improvement in chemical lesioning of indoleamine neurons in the mammalian brain. Z. Zellforsch. Mikrosk. Anat. 135:399‐414.
   Baumgarten, H.G. and Lachenmayer, L. 2004. Serotonin neurotoxins—past and present. Neurotox. Res. 6:589‐614.
   Baumgarten, H.G., Björklund, A., Lachenmayer, L., Nobin, A., and Stenevi, U. 1971. Long‐lasting selective depletion of brain serotonin by 5,6‐dihydroxytryptamine. Acta Physiol. Scand. Suppl. 373:1‐15.
   Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B. 1986. Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature 321:168‐171.
   Betarbet, R., Canet‐Aviles, R.M., Sherer, T.B., Mastroberardino, P.G., McLendon, C., Kim, J.H., Lund, S., Na, H.M., Taylor, G., Benes, N.F., Kopito, R., Seo, B.B., Yagi, T., Yagi, A., Klinefelter, G., Cookson, M.R., and Greenamyre, J.T. 2006. Intersecting pathways to neurodegeneration in Parkinson's disease: Effects of the pesticide rotenone on DJ‐1, alpha‐synuclein, and the ubiquitin‐proteasome system. Neurobiol. Dis. 22:404‐420.
   Beyer, R.E., Segura‐Aguilar, J., di Bernardo, S., Cavazzoni, M., Fato, R., Fiorentini, D., Galli, M.C., Setti, M., Landi, L., and Lenaz, G. 1997. The two‐electron quinone reductase DT‐diaphorase generates and maintains the antioxidant (reduced) form of coenzyme Q in membranes. Mol. Aspects Med. 18:15‐23.
   Boyle, K., Azari, M.F., Profyris, C., and Petratos, S. 2005. Molecular mechanisms in Schwann cell survival and death during peripheral nerve development, injury and disease. Neurotox. Res. 7:151‐167.
   Breese, C.R. and Breese, G.R. 1998. The use of neurotoxins to lesion catecholamine‐containing neurons to model clinical disorders, In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 19‐73. Humana Press, Totowa, N.J.
   Breese, G.R., Criswell, H.E., Duncan, G.E., and Mueller, R.A. 1990. A dopamine deficiency model of Lesch‐Nyhan disease—The neonatal‐6‐OHDA‐lesioned rat. Brain Res. Bull. 25:477‐484.
   Breese, G.R., Knapp, D.J., Criswell, H.E., Moy, S.S., Papadeas, S.T., and Blake, B.L. 2005. The neonate‐6‐hydroxydopamine‐lesioned rat: A model for clinical neuroscience and neurobiological principles. Brain Res. Brain Res. Rev. 48:57‐73.
   Brisinda, G., Maria, G., Bentivoglio, A.R., Cadeddu, F., Marniga, G., Brandara, F., and Albanese, A. 2006. Management of bladder, prostatic and pelvic floor disorders. Neurotox. Res. 9:161‐172.
   Bueker, E.D. 1948. Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat. Rec. 102:369‐389.
   Cannon, W.B. and Rosenblueth, A. 1937. Autonomic Neuroefffector Systems. Macmillan, New York.
   Colman, J.R., Nowocin, K.J., Switzer, R.C., Trusk, T.C., and Ramsdell, J.S. 2005. Mapping and reconstruction of domoic acid‐induced neurodegeneration in the mouse brain. Neurotoxicol. Teratol. 27:753‐767. Epub 2005 Aug 16.
   Creeley, C.E., Wozniak, D.F., Nardi, A., Farber, N.B., and Olney, J.W. 2008. Donepezil markedly potentiates memantine neurotoxicity in the adult rat brain. Neurobiol. Aging 29:153‐167.
   Díaz‐Véliz, G., Mora, S., Lungenstrass, H., and Segura‐Aguilar, J. 2004. Inhibition of DT‐diaphorase potentiates the in vivo neurotoxic effect of intranigral injection of salsolinol in rats. Neurotox Res. 5:629‐633.
   Ellison, G. 1992. Continuous amphetamine and cocaine have similar neurotoxic effects in lateral habenular nucleus and fasciculus retroflexus. Brain Res. 598:353‐356.
   Ellison, G. 1995. The N‐methyl‐D‐aspartate antagonists phencyclidine, ketamine and dizocilpine as both behavioral and anatomical models of the dementias. Brain Res. Rev. 20:250‐267.
   Ellison, G. 1998. The neurotoxic effects of continuous cocaine and amphetamine in habenula. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 211‐233. Humana Press, Totowa, N.J.
   Farooqui, A.A., Yi Ong, W., Lu, X.R., Halliwell, B., and Horrocks, L.A. 2001. Neurochemical consequences of kainate‐induced toxicity in brain: Involvement of arachidonic acid release and prevention of toxicity by phospholipase A(2) inhibitors. Brain Res. Rev. 38:61‐78.
   Fornai, F., Schlüter, O.M., Lenzi, P., Gesi, M., Ruffoli, R., Ferrucci, M., Lazzeri, G., Busceti, C.L., Pontarelli, F., Battaglia, G., Pellegrini, A., Nicoletti, F., Ruggieri, S., Paparelli, A., and Südhof, T.C. 2005. Parkinson‐like syndrome induced by continuous MPTP infusion: Convergent roles of the ubiquitin‐proteasome system and alpha‐synuclein. Proc. Natl. Acad. Sci. U.S.A. 102:3413‐3418.
   Foster, K.A., Adams, E.J., Durose, L., Cruttwell, C.J., Marks, E., Shone, C.C., Chaddock, J.A., Cox, C.L., Heaton, C., Sutton, J.M., Wayne, J., Alexander, F.C.G., and Rogers, D.F. 2006a. Re‐engineering the target specificity of clostridial neurotoxins—a route to novel therapeutics. Neurotox. Res. 9:101‐107.
   Foster, K.A., Bigalke, H., and Aoki, K.R. 2006b. Botulinum neurotoxin—from laboratory to bedside. Neurotox. Res. 9:133‐140.
   Frandsen, A. and Schousboe, A. 2003. AMPA receptor‐mediated neurotoxicity: Role of Ca2+ and desensitization. Neurochem. Res. 28:1495‐1499.
   Glaser, D.A. 2006. The use of botulinum toxins to treat hyperhidrosis and gustatory sweating syndrome. Neurotox. Res. 9:173‐178.
   Jacobowitz, D. and Kostrzewa, R. 1971. Selective action of 6‐hydroxydopa on noradrenergic terminals: Mapping of preterminal axons of the brain. Life Sci. 10:1329‐1341.
   Jaim‐Etcheverry, G. 1998. 2‐Chloroethylamines (DSP4 and xylamine). In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 131‐140. Humana Press, Totowa, N.J.
   Jaim‐Etcheverry, G. and Zieher, L.M. 1980. DSP‐4: A novel compound with neurotoxic effects on noradrenergic neurons of adult and developing rats. Brain Res. 188:513‐523.
   Jankovic, J. 2006. Botulinum toxin therapy for cervical dystonia. Neurotox. Res. 9:145‐148.
   Jauch, D., Urbanska, E.M., Guidetti, P., Bird, E.D., Monsattel, J. P., Whetsell, W.O. Jr., and Schwarcz, R. 1995. Dysfunction of brain kynurenic acid metabolism in Huntington's disease: Focus on kynurenine aminotransferases. J. Neurol. Sci. 130:39‐47.
   Jevtovic‐Todorovic, V., Hartman, R.E., Izumi, Y., Benshoff, N.D., Dikranian, K., Zorumski, C.F., Olney, J.W., and Wozniak, D.F. 2003. Early exposure to common anesthetic agents causes widespread neurodegeneration in the developing rat brain and persistent learning deficits. J. Neurosci. 23:876‐882.
   Jonsson, G., Hallman, H., Ponzio, F., and Ross, S. 1981. DSP4 (N‐(2‐chloroethyl)‐N‐ethyl‐2‐bromobenzylamine)—a useful denervation tool for central and peripheral noradrenaline neurons. Eur. J. Pharm. 72:173‐188.
   Karamyan, V.T. and Speth, R.C. 2008. Animal models of BMAA neurotoxicity: A critical review. Life Sci. 82:233‐246.
   Kim, S.R., Chung, Y.C., Chung, E.S., Park, K.W., Won, S.Y., Bok, E., Park, E.S., and Jin, B.K. 2007. Roles of transient receptor potential vanilloid subtype 1 and cannabinoid type 1 receptors in the brain: Neuroprotection versus neurotoxicity. Mol. Neurobiol. 35:245‐54.
   Koh, J.Y., Peters, S., and Choi, D.W. 1986. Neurons containing NADPH‐diaphorase are selectively resistant to quinolinate toxicity. Science 234:73‐76.
   Kostrzewa, R.M. 1998. 6‐Hydroxydopa, a catecholamine neurotoxin and endogenous excitotoxin at non‐NMDA receptors. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa ed.) pp. 109‐129. Humana Press, Totowa, N.J.
   Kostrzewa, R.M. 1999. Selective neurotoxins, chemical tools to probe the mind: The first thirty years and beyond. Neurotox. Res. 1:3‐25.
   Kostrzewa, R.M. and Harper, J.W. 1974. Effects of 6‐hydroxydopa on catecholamine‐containing neurons in brains of newborn rats. Brain Res. 69:174‐181.
   Kostrzewa, R.M. and Jacobowitz, D.M. 1974. Pharmacological actions of 6‐hydroxydopamine. Pharmacol. Rev. 26:199‐288.
   Kostrzewa, R.M. and Segura‐Aguilar, J. 2007. Botulinum neurotoxin: Evolution from poison, to research tool—onto medicinal therapeutic and future pharmaceutical panacea. Neurotox. Res. 12:275‐290.
   Kostrzewa, R.M., Huang, N.Y., Kostrzewa, J.P., Nowak, P., and Brus, R. 2007. Modeling tardive dyskinesia: Predictive 5‐HT2C receptor antagonist treatment. Neurotox. Res. 11:41‐50.
   Kostrzewa, R.M., Kostrzewa, J.P., Kostrzewa, R.A., Nowak, P., and Brus, R. 2008. Pharmacological models of ADHD. J. Neural Transm. 115:287‐298. Epub 2007 Nov 12.
   Kostrzewa, R.M., Antkiewicz‐Michaluk, L., and Fornai, F. 2009. Dopaminergic nerves as targets for neurotoxins. In Neurotoxicology, 3rd ed. (H. Tilson and G.J. Harry, eds.) Talylor & Francis, Totowa, N.J. In press.
   Langston, J.W. and Ballard, P.A. 1984. Parkinsonism induced by 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine (MPTP): Implications for treatment and the pathogenesis of Parkinson's disease. Can. J. Neurol. Sci. 11:160‐165.
   Langston, J.W., Ballard, P.A., Tetrud, J.W., and Irwin, I. 1983. Chronic parkinsonism in humans due to a product of meperidine analog synthesis. Science 219:979‐980.
   Levi‐Montalcini, R. 1987. The nerve growth factor 35 years later. Science 237:1154‐1162.
   Levi‐Montalcini, R. and Angeletti, P.U. 1966. Immunosympathectomy. Pharmacol. Rev. 18:619‐628.
   Levi‐Montalcini, R. and Booker, B. 1960. Destruction of the sympathetic ganglia in mammals by an antiserum to the nerve growth promoting factor. Proc. Natl. Acad. Sci. U.S.A. 46:374‐391.
   Levi‐Montalcini, R. and Hamburger, V. 1951. Selective growth stimulating effects of mouse sarcoma on the sensory and sympathetic nervous system of the chick embryo. J. Exp. Zool. 116:321‐361.
   Lew, R., Malberg, J.E., Ricaurte, G.A., and Seiden, L.S. 1998. Evidence for and mechanism of action of neurotoxicity of amphetamine related compounds. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 235‐268. Humana Press, Totowa, N.J.
   Mahowald, M.L, Singh, J.A., and Dykstra, D. 2006. Long term effects of intra‐articular botulinum toxin A for refractory joint pain. Neurotox. Res. 9:179‐188.
   Manning, A.B. and Langston, J.W. 2007. Model fusion, the next phase in developing animal models for Parkinson's disease. Neurotox. Res. 11:219‐240.
   Naoi, M., Maruyama, W., Dostert, P., Hashizume, Y., Nakahara, D., Takahashi, T., and Ota, M. 1996a. Dopamine‐derived endogenous 1(R),2(N)‐dimethyl‐6,7‐dihydroxy‐1,2,3,4‐tetrahydroisoquinoline, N‐methyl‐(R)‐salsolinol, induced parkinsonism in rat: Biochemical, pathological and behavioral studies. Brain Res. 708:285‐295.
   Naoi, M., Maruyama, W., Dostert, P., Kohda, K., and Kaiya, T. 1996b. A novel enzyme enantio‐selectively synthesizes (R)salsolinol, a precursor of a dopaminergic neurotoxin, N‐methyl(R)salsolinol. Neurosci. Lett. 212:183‐186.
   Olney, J.W. 1969. Brain lesions, obesity and other disturbances in mice treated with monosodium glutamate. Science 164:719‐721.
   Olney, J.W. 2002. New insights and new issues in developmental neurotoxicology. Neurotoxicology 23:659‐668.
   Olney, J.W. and Farber, N.B. 1995. Glutamate receptor dysfunction and schizophrenia. Arch. Gen. Psychiatr. 52:998‐1007.
   Olney, J.W. and Sharpe, L.G. 1969. Brain lesions in an infant rhesus monkey treated with monosodium glutamate. Science 166:386‐388.
   Olney, J.W., Ho, O.L., and Rhee, V. 1971. Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system. Exp. Brain Res. 14:61‐76.
   Olney, J.W., Babruyere, J., and Price, M.T. 1989. Pathological changes induced in cerebrocorticala neurons by phencyclidine and related drugs. Science 244:1360‐1362.
   Olney, J.W., Wozniak, D.F., Jevtovic‐Todorovic, V., Farber, N.B., Bittigau, P., and Ikonomidou, C. 2002. Glutamate and GABA receptor dysfunction in the fetal alcohol syndrome. Neurotox. Res. 4:315‐325.
   Pavlovic, S., Schulze, G., Wernicke, C., Bonnet, R., Gille, G., Badiali, L., Kaminska, A., Lorenc‐Koci, E., Ossowska, K., and Rommelspacher, H. 2006. 2,9‐Dimethyl‐beta‐carbolinium, a neurotoxin occurring in human brain, is a potent inducer of apoptosis as 1‐methyl‐4‐phenylpyridinium. Neuroscience 139:1525‐1537.
   Pranzatelli, M.R. 1998. Use of 5,6‐ and 5,7‐dihydroxytryptamine to lesion serotonin neurons. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 293‐311. Humana Press, Totowa, N.J.
   Rajdev, S. and Sharp, F.R. 1998. Neurotoxicity of NMDA receptor antagonists. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 355‐384. Humana Press, Totowa, N.J.
   Ricaurte, G.A., Schuster, C.R., and Seiden, L.S. 1980. Long‐term effects of repeated methylamphetamine administration on dopamine and serotonin neurons in the rat brain: A regional study. Brain Res. 193:153‐163.
   Ricaurte, G.A., Guillery, R.W., Seiden, L.S., Schuster, C.R., and Moore, R.Y. 1982. Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Res. 235:93‐103.
   Ross, S.B. and Renyi, A.L. 1976. On the long‐lasting inhibitory effect of N‐(2‐chloroethyl)‐N‐ethyl‐2‐bromobenzylamine (DSP‐4) on the active uptake of noradrenaline. J. Pharm. Pharmacol. 28:458‐459.
   Royland, J.E. and Langston, J.W. 1998. MPTP: A dopaminergic neurotoxin. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 141‐194. Humana Press, Totowa, N.J.
   Schmidt, C.J., Ritter, J.K., Sonsalla, P.K., Hanson, G.R., and Gibb, J.W. 1985. Role of dopamine in the neurotoxic effects of methamphetamine. J. Pharmacol. Exp. Ther. 233:539‐544.
   Schwarcz, R., Whetsell, W.O. Jr., and Mangano, R.M. 1983. Quinolinic acid, an endogenous metabolite that produces axon‐sparing lesions in rat brain. Science 219:316‐318.
   Segura‐Aguilar, J. and Kostrzewa, R.M. 2006. Neurotoxins and neurotoxicity mechanisms. An overview. Neurotox. Res. 10:263‐287.
   Singh, B.R. 2006. Botulinum neurotoxin structure, engineering, and novel cellular trafficking and targeting. Neurotox. Res. 9:73‐92.
   Szallasi, A. 1998. Toxic vanilloids. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 385‐398. Humana Press, Totowa, N.J.
   Thoenen, H. and Tranzer, J.P. 1968. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6‐hydroxydopamine. Naunyn‐Schmiedebergs Arch. Pharmakol. Exp. Pathol. 261:271‐288.
   Ting, K.K., Brew, B., and Guillemin, G. 2007. The involvement of astrocytes and kynurenine pathway in Alzheimer's disease. Neurotox Res. 12:247‐62.
   Tranzer, J.P. and Thoenen, H. 1967a. Electronmicroscopic localization of 5‐hydroxydopamine (3,4,5‐trihydroxyphenyl‐ethylamine), a new false sympathetic transmitter. Experientia 23:743‐745.
   Tranzer, J.P. and Thoenen, H. 1967b. Ultra‐morphologische Veranderungen der sympathischen Nervendigunden der Katze nach Vorbehandlung mit 5‐ und 6‐hydroxy‐dopamin. Naunyn‐Schmiedebergs Arch. Pharmakol. Exp. Pathol. 257:343‐344.
   Trujillo, C., Ratts, R., Tamayo, A., Harrison, R., and Murphy, J.R. 2006. Trojan horse or proton force: Finding the right partner(s) for toxin translocation. Neurotox. Res. 9:63‐71.
   Turski, W.A., Gramsbergen, J.B., Traitler, H., and Schwarcz, R. 1989. Rat brain slices produce and liberate kynurenic acid upon exposure to L‐kynurenine. J. Neurochem. 52:1629‐1636.
   Urbanska, E., Ikonomidou, C., Sieklucka, M., and Turski, W.A. 1991. Aminooxyacetic acid produces excitotoxic lesions in the rat striatum. Synapse 9:129‐135.
   Urbanska, E.M., Dekundy, A., Kleinrok, Z., Turski, W.A., and Czuczwar, S.J. 1998. Glutamate receptor agonists and brain pathology. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 329‐354. Humana Press, Totowa, N.J.
   Van der Schyf, C.J., Usuki, E., Pond, S.M., and Castagnoli, N. Jr. 1998. Haloperidol‐derived pyridinium metabolites: Structural and toxicological relationships to MPP+‐like neurotoxins. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 211‐233. Humana Press, Totowa, N.J.
   Vittal, H. and Pasricha, P.J. 2006. Botulinum toxin for gastrointestinal disorders: Therapy and mechanisms. Neurotox. Res. 9:149‐159.
   Waddington, J.L. and Gamble, S.J. 1980. Neuroleptic treatment for a substantial proportion of adult life: Behavioural sequelae of 9 months haloperidol administration. Eur. J. Pharmacol. 67:363‐369.
   Waddington, J.L., Cross, A.J., Gamble, S.J., and Bourne, R.C. 1983. Spontaneous orofacial dyskinesia and dopaminergic function after 6 months of neuroleptic treatment. Science 220:530‐532.
   Walsh, T.J. and Potter, P.F. 1998. Selective cholinergic neurotoxins: AF64A and 192‐IgG‐saporin. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 313‐327. Humana Press, Totowa, N.J.
   Wernicke, C., Schott, Y., Enzensperger, C., Schulze, G., Lehmann, J., and Rommelspacher, H. 2007. Cytotoxicity of beta‐carbolines in dopamine transporter expressing cells: Structure‐activity relationships. Biochem. Pharmacol. 74:1065‐1077.
   Zafar, K.S., Siegel, D., and Ross, D. 2006. A potential role for cyclized quinines derived from dopamine, DOPA, and 3,4‐dihydroxyphenylacetic acid in proteasomal inhibition. Mol. Pharmacol. 70:1079‐1086.
   Zigmond, M.J. and Keefe, K.A. 1998. 6‐Hydroxydopamine as a tool for studying catecholamines in adult animals. In Highly Selective Neurotoxins: Basic and Clinical Applications (R.M. Kostrzewa, ed.) pp. 75‐107. Humana Press, Totowa, N.J.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library