Cre Activated and Inactivated Recombinant Adeno‐Associated Viral Vectors for Neuronal Anatomical Tracing or Activity Manipulation

Arpiar Saunders1, Bernardo L. Sabatini1

1 Department of Neurobiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, Massachusetts
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 1.24
DOI:  10.1002/0471142301.ns0124s72
Online Posting Date:  July, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Recombinant adeno‐associated viruses (rAAVs) transcriptionally activated by Cre recombinase (Cre‐On) are powerful tools for determining the anatomy and function of genetically defined neuronal types in transgenic Cre driver mice. Here we describe how rAAVs transcriptionally inactivated by Cre (Cre‐Off) can be used in conjunction with Cre‐On rAAVs or genomic Cre‐reporter alleles to study brain circuits. Intracranial injection of Cre‐On/Cre‐Off rAAVs into spatially intermingled Cre+ and Cre neurons allows these populations to be differentially labeled or manipulated within individual animals. This comparison helps define the unique properties of Cre+ neurons, highlighting the specialized role they play in their constituent brain circuits. This protocol touches on the conceptual and experimental background of Cre‐Off rAAV systems, including caveats and methods of validation. © 2015 by John Wiley & Sons, Inc.

Keywords: AAV; rAAV; Cre‐lox; Cre‐dependent virus; viral tracer

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Strategic Planning
  • Basic Protocol 1: Preparation of Cre‐ON/OFF rAAVs for Intracranial Injection
  • Basic Protocol 2: Fixed Tissue Validation Techniques for Cre‐OFF rAAV Expression
  • Basic Protocol 3: Immunohistochemistry on Free‐Floating Brain Slices
  • Reagents and Solutions
  • Commentary
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of Cre‐ON/OFF rAAVs for Intracranial Injection

  Materials
  • Optional: 1× PBS ( appendix 2A) with 350 mM NaCl and 5% (w/v) sorbitol (for dilution)
  • Microcentrifuge
  • PCR tubes (individual or strip)
  • Stereotactic injection setup and pipet (units 1.20 & 4.35)

Basic Protocol 2: Fixed Tissue Validation Techniques for Cre‐OFF rAAV Expression

  Materials
  • 4% paraformaldehyde (PFA; ∼10 ml/mouse; see recipe)
  • 1× PBS ( appendix 2A)
  • Mounting media (for mounting and imaging tissue sections; e.g., Life Technologies, cat. no. P36935)
  • Fixative‐only dissection tools (for brain removal)
  • 20‐ml glass scintillation vials (for brain storage)
  • 24‐well plate
  • Supplies for mounting and imaging tissue sections
    • Small paint brush
    • Glass slides
    • Cover slips
    • Fluorescent microscope
  • Additional reagents and equipment for intracardiac perfusion fixation and fixed tissue sectioning (unit 1.1) and for stereotactic injections (units 1.20 & 4.35)
NOTE: All protocols using live animals must first be reviewed and approved by an Institutional Animal Care and Use Committee (IACUC) and must follow officially approved procedures for the care and use of laboratory animals.NOTE: All reagents and equipment coming into contact with live cells must be sterile, and proper sterile technique should be followed accordingly.

Basic Protocol 3: Immunohistochemistry on Free‐Floating Brain Slices

  Materials
  • 1× PBS ( appendix 2A)
  • Blocking/dilution buffer (see recipe)
  • Primary antibody (e.g., mouse monoclonal Cre recombinase; Millipore, cat. no. MAB 3120)
  • Secondary antibody (e.g., donkey anti‐mouse Alexa Fluor 647; Life Technologies, cat. no. A‐31571)
  • Mounting media (for mounting and imaging tissue sections; e.g., Life Technologies, cat. no. P36935)
  • Optional: Nuclear counterstain (for mounting and imaging tissue sections)
  • 24‐well plate
  • Paint brush
  • Benchtop shaker
  • Aluminum foil
  • Supplies for mounting and imaging tissue sections
    • Glass slides
    • Cover slips
    • Fluorescent microscope
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Asokan, A., Schaffer, D.V., and Jude Samulski, R. 2012. The AAV vector toolkit: Poised at the clinical crossroads. Mol. Ther. 20:699‐708.
  Atasoy, D., Aponte, Y., Su, H.H., and Sternson, S.M. 2008. A FLEx switch targets Channelrhodopsin‐2 to multiple cell types for imaging and long‐range circuit mapping. J. Neurosci. 28:7025‐7030.
  Barzel, A., Paulk, N.K., Shi, Y., Huang, Y., Chu, K., Zhang, F., Valdmanis, P.N., Spector, L.P., Porteus, M.H., Gaensler, K.M., and Kay, M.A. 2015. Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature 517:360‐364.
  Cardin, J.A., Carlén, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.‐H., and Moore, C.I. 2009. Driving fast‐spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663‐667.
  Cotmore, S.F. and Tattersall, P. 2013. Parvovirus diversity and DNA damage responses. Cold Spring Harb. Perspect. Biol. 5:a012989‐a012989.
  Deyle, D.R. and Russell, D.W. 2009. Adeno‐associated virus vector integration. Curr. Opin. Mol. Ther. 11:442‐447.
  Donsante, A., Miller, D.G., Li, Y., Vogler, C., Brunt, E.M., Russell, D.W., and Sands, M.S. 2007. AAV vector integration sites in mouse hepatocellular carcinoma. Science 317:477‐477.
  Gore, B.B., Soden, M.E., and Zweifel, Z.W. 2013. Manipulating gene expression in projection‐specific neuronal populations using combinatorial viral approaches. Curr. Protoc. Neurosci. 65:4.35.1‐4.35.20.
  Gray, S.J., Choi, V.W., Asokan, A., Haberman, R.A., McCown, T.J., and Samulski, R.J. 2011. Production of recombinant adeno‐associated viral vectors and use in in vitro and in vivo administration. Curr. Protoc. Neurosci. 57:4.17.1‐4.17.30.
  Harris, J.A., Oh, S.W., and Zeng, H. 2012. Adeno‐associated viral vectors for anterograde axonal tracing with fluorescent proteins in nontransgenic and cre driver mice. Curr. Protoc. Neurosci. 59:1.20.1‐1.20.18.
  Inagaki, K., Lewis, S.M., Wu, X., Ma, C., Munroe, D.J., Fuess, S., Storm, T.A., Kay, M.A., and Nakai, H. 2007. DNA palindromes with a modest arm length of 20 base pairs are a significant target for recombinant adeno‐associated virus vector integration in the liver, muscles, and heart in mice. J. Virol. 81:11290‐11303.
  Kozorovitskiy, Y., Saunders, A., Johnson, C.A., Lowell, B.B., and Sabatini, B.L. 2012. Recurrent network activity drives striatal synaptogenesis. Nature 485:1‐8.
  Kravitz, A.V., Freeze, B.S., Parker, P.R.L., Kay, K., Thwin, M.T., Deisseroth, K., and Kreitzer, A.C. 2010. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622‐626.
  Kuhlman, S.J. and Huang, Z.J. 2008. High‐resolution labeling and functional manipulation of specific neuron types in mouse brain by Cre‐activated viral gene expression. PLoS One 3:e2005.
  Lisowski, L., Lau, A., Wang, Z., Zhang, Y., Zhang, F., Grompe, M., and Kay, M.A. 2012. Ribosomal DNA integrating rAAV‐rDNA vectors allow for stable transgene expression. Mol. Ther. 20:1912‐1923.
  Madisen, L., Zwingman, T.A., Sunkin, S.M., Oh, S.W., Zariwala, H.A., Gu, H., Ng, L.L., Palmiter, R.D., Hawrylycz, M.J., Jones, A.R., Lein, E.S., and Zeng, H. 2010. A robust and high‐throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13:133‐140.
  Miller, D.G., Petek, L.M., and Russell, D.W. 2004. Adeno‐associated virus vectors integrate at chromosome breakage sites. Nat. Genet. 36:767‐773.
  Murlidharan, G., Samulski, R.J., and Asokan, A. 2014. Biology of adeno‐associated viral vectors in the central nervous system. Front. Mol. Neurosci. 7:76.
  Saunders, A., Johnson, C.A., and Sabatini, B.L. 2012. Novel recombinant adeno‐associated viruses for Cre activated and inactivated transgene expression in neurons. Front. Neural Circuits 6:47.
  Schnütgen, F., Doerflinger, N., Calléja, C., Wendling, O., Chambon, P., and Ghyselinck, N.B. 2003. A directional strategy for monitoring Cre‐mediated recombination at the cellular level in the mouse. Nat. Biotechnol. 21:562‐565.
  Siegel, R.W., Jain, R., and Bradbury, A. 2001. Using an in vivo phagemid system to identify non‐compatible loxP sequences. FEBS Lett. 505:467‐473.
  Vincent‐Lacaze, N., Snyder, R.O., Gluzman, R., Bohl, D., Lagarde, C., and Danos, O. 1999. Structure of adeno‐associated virus vector DNA following transduction of the skeletal muscle. J. Virol. 73:1949‐1955.
  Wang, Z., Lisowski, L., Finegold, M.J., Nakai, H., Kay, M.A., and Grompe, M. 2012. AAV vectors containing rDNA homology display increased chromosomal integration and transgene persistence. Mol. Ther. 20:1902‐1911.
  Yan, Z., Zak, R., Zhang, Y., and Engelhardt, J.F. 2005. Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno‐associated virus genomes. J. Virol. 79:364‐379.
  Yang, J., Zhou, W., Zhang, Y., Zidon, T., Ritchie, T., and Engelhardt, J.F. 1999. Concatamerization of adeno‐associated virus circular genomes occurs through intermolecular recombination. J. Virol. 73:9468‐9477.
  Zheng, B., Sage, M., Sheppeard, E.A., Jurecic, V., and Bradley, A. 2000. Engineering mouse chromosomes with Cre‐loxP: Range, efficiency, and somatic applications. Mol. Cell. Biol. 20:648‐655.
Internet Resources
  http://www.addgene.org/Bernardo_Sabatini/
  DO, FAS, and Cre‐Switch rAAVs available from Addgene.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library