Fluorescence Microscopy: A Concise Guide to Current Imaging Methods

Christian A. Combs1, Hari Shroff2

1 NHLBI Light Microscopy Facility, National Institutes of Health, Bethesda, Maryland, 2 NIBIB Section on High Resolution Optical Imaging, National Institutes of Health, Bethesda, Maryland
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 2.1
DOI:  10.1002/cpns.29
Online Posting Date:  April, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


The field of fluorescence microscopy is rapidly growing and offers ever more imaging capabilities for biologists. Over the past decade, many new technologies and techniques have been developed that allow for combinations of deeper, faster, and higher resolution imaging. These have included the commercialization of many super‐resolution and light sheet fluorescence microscopy techniques. For the non‐expert, it can be difficult to match the best imaging techniques to biological questions. Picking the most appropriate imaging modality requires a basic understanding of the underlying physics governing each of them, as well as information comparing potentially competing imaging properties in the context of the sample to be imaged. To address these issues, we provide here concise descriptions of a wide range of commercially available imaging techniques from wide‐field to super‐resolution microscopy, and provide a tabular guide to aid in comparisons among them. In this manner we provide a concise guide to understanding and matching the correct imaging modality to meet research needs. © 2017 by John Wiley & Sons, Inc.

Keywords: confocal; light‐sheet; review; super‐resolution; two‐photon

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Wide‐Field Fluorescence Microscopy (WFFM) Techniques
  • Total Internal Reflection Fluorescence (TIRF) Microscopy
  • Confocal Microscopy
  • Two‐Photon Fluorescence Microscopy (TPFM)
  • Structured Illumination Fluorescence Microscopy (SIM)
  • Stimulated Emission Depletion (STED) Fluorescence Microscopy
  • Single‐Molecule Localization Fluorescence Microscopy Techniques (SMLM)
  • Light Sheet Fluorescence Microscopy (LSFM)
  • Deconvolution Fluorescence Microscopy (DFM)
  • Potential Future Directions
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Amat, F., Hockendorf, B., Wan, Y., Lemon, W. C., McDole, K., & Keller, P. J. (2015). Efficient processing and analysis of large‐scale light‐sheet microscopy data. Nature Protocols, 10, 1679–1696. doi: 10.1038/nprot.2015.111.
  Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., … Hess, H. F. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313, 1642–1645.
  Biggs, D. S. (2010). 3D deconvolution microscopy. Current Protocols in Cytometry, 52, 12.19.1–12.19.20. doi: 10.1002/0471142956.cy1219s52.
  Boccacci, P., & Bertero, M. (2002). Image‐restoration methods: Basics and algorithms. In: A. Diaspro, (Ed.), Confocal and two‐photon Mmcroscopy: Foundations, applications, and advances (pp. 253–269). New York: Wiley‐Liss.
  Bolbat, A., & Schultz, C. (2016). Recent developments of genetically encoded optical sensors for cell biology. Molecular Biology of the Cell. doi: 10.1111/boc.201600040.
  Campagnola, P. J., & Loew, L. M. (2003). Second‐harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nature Biotechnology, 21, 1356–1360. doi: 10.1038/nbt894.
  Chen, B. C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W., … Betzig, E. (2014). Lattice light‐sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. Science, 346, 1257998. doi: 10.1126/science.1257998.
  Coling, D., & Kachar, B. (2001). Theory and application of fluorescence microscopy. Current Protocols in Neuroscience, 00, 2.1.1–2.1.11. doi: 10.1002/0471142301.ns0201s00.
  Cox, S., & Jones, G. E. (2013). Imaging cells at the nanoscale. The International Journal of Biochemistry & Cell Biology, 45, 1669–1678. doi: 10.1016/j.biocel.2013.05.010.
  Debarre, D., Botcherby, E. J., Booth, M. J., & Wilson, T. (2008). Adaptive optics for structured illumination microscopy. Opt Express, 16, 9290–9305. doi: 10.1364/OE.16.009290.
  Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M., & Zhuang, X. (2011). Evaluation of fluorophores for optimal performance in localization‐based super‐resolution imaging. Nature Methods, 8, 1027–1036. doi: 10.1038/nmeth.1768.
  Denk, W., Strickler, J., & Webb, W. (1990). Two‐photon laser scanning fluorescence microscopy. Science, 248, 73–76. doi: 10.1126/science.2321027.
  Diaspro, A., Bianchini, P., Vicidomini, G., Faretta, M., Ramoino, P., & Usai, C. (2006). Multi‐photon excitation microscopy. Biomedical Engineering Online, 5, 36. doi: 10.1186/1475‐925X‐5‐36.
  Dickinson, M. E., Bearman, G., Tille, S., Lansford, R., & Fraser, S. E. (2001). Multi‐spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques, 31, 1272, 1274–1276, 1278.
  Drobizhev, M., Makarov, N. S., Tillo, S. E., Hughes, T. E., & Rebane, A. (2011). Two‐photon absorption properties of fluorescent proteins. Nature Methods, 8, 393–399. doi: 10.1038/nmeth.1596.
  Egner, A., Andresen, V., & Hell, S. W. (2002). Comparison of the axial resolution of practical Nipkow‐disk confocal fluorescence microscopy with that of multifocal multiphoton microscopy: Theory and experiment. Journal of Microscopy, 206, 24–32. doi: 10.1046/j.1365‐2818.2002.01001.x.
  Folling, J., Bossi, M., Bock, H., Medda, R., Wurm, C. A., Hein, B., … Hell, S. W. (2008). Fluorescence nanoscopy by ground‐state depletion and single‐molecule return. Nature Methods, 5, 943–945.
  Gould, T. J., Burke, D., Bewersdorf, J., & Booth, M. J. (2012). Adaptive optics enables 3D STED microscopy in aberrating specimens. Optics Express, 20, 20998–21009. doi: 10.1364/OE.20.020998.
  Gustafsson, M. G. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal de Microscopie, 198, 82–87. doi: 10.1046/j.1365‐2818.2000.00710.x.
  Han, R., Li, Z., Fan, Y., & Jiang, Y. (2013). Recent advances in super‐resolution fluorescence imaging and its applications in biology. Journal of Genetics and Genomics = Yi Chuan Xue Bao, 40, 583–595. doi: 10.1016/j.jgg.2013.11.003.
  Helmchen, F., & Denk, W. (2005). Deep tissue two‐photon microscopy. Nature Methods, 2, 932–940. doi: 10.1038/nmeth818.
  Henriques, R., Lelek, M., Fornasiero, E. F., Valtorta, F., Zimmer, C., & Mhlanga, M. M. (2010). QuickPALM: 3D real‐time photoactivation nanoscopy image processing in Image. Journal Nature Methods, 7, 339–340. doi: 10.1038/nmeth0510‐339.
  Hess, S. T., Girirajan, T. P., & Mason, M. D. (2006). Ultra‐high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91, 4258–4272.
  Hibbs, A. R. (2004). Confocal microscopy for biologists. New York, NY: Springer.
  Huisken, J., & Stainier, D. Y. (2007). Even fluorescence excitation by multidirectional selective plane illumination microscopy (mSPIM). Optics Letters, 32, 2608–2610. doi: 10.1364/OL.32.002608.
  Huisken, J., Swoger, J., Del Bene, F., Wittbrodt, J., & Stelzer, E. H. (2004). Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science, 305, 1007–1009. doi: 10.1126/science.1100035.
  Ingaramo, M., York, A. G., Hoogendoorn, E., Postma, M., Shroff, H., & Patterson, G. H. (2014). Richardson‐Lucy deconvolution as a general tool for combining images with complementary strengths. Chemphyschem, 15, 794–800. doi: 10.1002/cphc.201300831.
  Inoue, S., & Spring, K. R. (1997). Video microscopy: The fundamentals. New York, NY: Springer.
  Ji, N., Milkie, D. E., & Betzig, E. (2010). Adaptive optics via pupil segmentation for high‐resolution imaging in biological tissues. Nature Methods, 7, 141–147. doi: 10.1038/nmeth.1411.
  Kaufmann, A., Mickoleit, M., Weber, M., & Huisken, J. (2012). Multilayer mounting enables long‐ term imaging of zebrafish development in a light sheet microscope. Development, 139, 3242–3247. doi: 10.1242/dev.082586.
  Keller, P. J., Schmidt, A. D., Wittbrodt, J., & Stelzer, E. H. (2008). Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science, 322, 1065–1069. doi: 10.1126/science.1162493.
  Kellner, R. R., Baier, C. J., Willig, K. I., Hell, S. W., & Barrantes, F. J. (2007). Nanoscale organization of nicotinic acetylcholine receptors revealed by stimulated emission depletion microscopy. Neuroscience, 144, 135–143. doi: 10.1016/j.neuroscience.2006.08.071.
  Kobat, D., Durst, M. E., Nishimura, N., Wong, A. W., Schaffer, C. B., & Xu, C. (2009). Deep tissue multiphoton microscopy using longer wavelength excitation. Optics Express, 17, 13354–13364. doi: 10.1364/OE.17.013354.
  Kumar, A., Wu, Y., Christensen, R., Chandris, P., Gandler, W., McCreedy, E., … Shroff, H. (2014). Dual‐view plane illumination microscopy for rapid and spatially isotropic imaging. Nature Protocols, 9, 2555–2573. doi: 10.1038/nprot.2014.172.
  Lichtman, J. W., & Conchello, J. A. (2005). Fluorescence microscopy. Nature Methods, 2, 910–919. doi: 10.1038/nmeth817.
  Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., … Lichtman, J. W. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450, 56–62. doi: 10.1038/nature06293.
  Lukinavicius, G., Umezawa, K., Olivier, N., Honigmann, A., Yang, G., Plass, T., … Johnsson, K. (2013). A near‐infrared fluorophore for live‐cell super‐resolution microscopy of cellular proteins. Nature Chemical Biology, 5, 132–139. doi: 10.1038/nchem.1546.
  Mostany, R., Miquelajauregui, A., Shtrahman, M., & Portera‐Cailliau, C. (2015). Two‐photon excitation microscopy and its applications in neuroscience. In: J. P. Verveer, (Ed.), Advanced fluorescence microscopy: Methods and protocols (pp. 25–42). New York, NY: Springer New York.
  Mütze, J., Iyer, V., Macklin, J. J., Colonell, J., Karsh, B., Petrášek, Z., … Harris, T. D. (2012). Excitation spectra and brightness optimization of two‐photon excited probes. Biophysical Journal, 102, 934–944. doi: 10.1016/j.bpj.2011.12.056.
  Neil, M. A., Squire, A., Juskaitis, R., Bastiaens, P. I., & Wilson, T. (2000). Wide‐field optically sectioning fluorescence microscopy with laser illumination. Journal de Microscopie, 197, 1–4. doi: 10.1046/j.1365‐2818.2000.00656.x.
  Ni, M., Zhuo, S., So, P. T., & Yu, H. (2016a). Fluorescent probes for nanoscopy: Four categories and multiple possibilities. Journal of Biophotonics. doi: 10.1002/jbio.201600042.
  Ni, M., Zhuo, S., So, P. T. C., & Yu, H. (2016b). Fluorescent probes for nanoscopy: Four categories and multiple possibilities. Journal of Biophotonics, n/a‐n/a.
  Pak, Y. L., Swamy, K. M., & Yoon, J. (2015). Recent progress in fluorescent imaging probes. Sensors (Basel), 15, 24374–24396. doi: 10.3390/s150924374.
  Patterson, G., Davidson, M., Manley, S., & Lippincott‐Schwartz, J. (2010). Superresolution imaging using single‐molecule localization. Annual Review of Physical Chemistry, 61, 345–367. doi: 10.1146/annurev.physchem.012809.103444.
  Pawley, J. B. (Ed.) (2006). Handbook of biological confocal microscopy. New York, NY: Springer.
  Pearson, H. (2007). The good, the bad and the ugly. Nature, 447, 138–140. doi: 10.1038/447138a.
  Pellett, P. A., Sun, X., Gould, T. J., Rothman, J. E., Xu, M. Q., Correa, I. R., Jr., & Bewersdorf, J. (2011). Two‐color STED microscopy in living cells. Biomedical Optics Express, 2, 2364–2371. doi: 10.1364/BOE.2.002364.
  Pietzsch, T., Saalfeld, S., Preibisch, S., & Tomancak, P. (2015). BigDataViewer: Visualization and processing for large image data sets. Nature Methods, 12, 481–483. doi: 10.1038/nmeth.3392.
  Royer, L. A., Weigert, M., Gunther, U., Maghelli, N., Jug, F., Sbalzarini, I. F., & Myers, E. W. (2015). ClearVolume: Open‐source live 3D visualization for light‐sheet microscopy. Nature methods, 12, 480–481. doi: 10.1038/nmeth.3372.
  Rueckel, M., Mack‐Bucher, J. A., & Denk, W. (2006). Adaptive wavefront correction in two‐photon microscopy using coherence‐gated wavefront sensing. Proceedings of the National Academy of Sciences of the United States of America, 103, 17137–17142. doi: 10.1073/pnas.0604791103.
  Rust, M. J., Bates, M., & Zhuang, X. (2006). Sub‐diffraction‐limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3, 793–795.
  Scherf, N., & Huisken, J. (2015). The smart and gentle microscope. Nature Biotechnology, 33, 815–818. doi: 10.1038/nbt.3310.
  Schermelleh, L., Carlton, P. M., Haase, S., Shao, L., Winoto, L., Kner, P., … Sedat, J. W. (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320, 1332–1336. doi: 10.1126/science.1156947.
  Schindelin, J., Arganda‐Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., … Cardona, A. (2012). Fiji: An open‐source platform for biological‐image analysis. Nature Methods, 9, 676–682. doi: 10.1038/nmeth.2019.
  Schmidt, R., Wurm, C. A., Jakobs, S., Engelhardt, J., Egner, A., & Hell, S. W. (2008). Spherical nanosized focal spot unravels the interior of cells. Nature Methods, 5, 539–544. doi: 10.1038/nmeth.1214.
  Shaner, N. C., Steinbach, P. A., & Tsien, R. Y. (2005). A guide to choosing fluorescent proteins. Nature Methods, 2, 905–909. doi: 10.1038/nmeth819.
  Sharonov, A., & Hochstrasser, R. M. (2006). Wide‐field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences of the United States of America, 103, 18911–18916. doi: 10.1073/pnas.0609643104.
  Spiess, E., Bestvater, F., Heckel‐Pompey, A., Toth, K., Hacker, M., Stobrawa, G., … Acker, H. (2005). Two‐photon excitation and emission spectra of the green fluorescent protein variants ECFP, EGFP and EYFP. Journal of Microscopy, 217, 200–204. doi: 10.1111/j.1365‐2818.2005.01437.x.
  Svoboda, K., & Yasuda, R. (2006). Principles of two‐photon excitation microscopy and its applications to neuroscience. Neuron, 50, 823–839. doi: 10.1016/j.neuron.2006.05.019.
  Thompson, R. E., Larson, D. R., & Webb, W. W. (2002). Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal, 82, 2775–2783. doi: 10.1016/S0006‐3495(02)75618‐X.
  Toomre, D., & Bewersdorf, J. (2010). A new wave of cellular imaging. Annual Review of Cell and Developmental Biology, 26, 285–314. doi: 10.1146/annurev‐cellbio‐100109‐104048.
  Toomre, D., & Manstein, D. J. (2001). Lighting up the cell surface with evanescent wave microscopy. Trends in Cell Biology, 11, 298–303. doi: 10.1016/S0962‐8924(01)02027‐X.
  Uno, S.‐n., Tiwari, D. K., Kamiya, M., Arai, Y., Nagai, T., & Urano, Y. (2015). A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy, 64, 263–277. doi: 10.1093/jmicro/dfv037.
  Urban, N. T., Willig, K. I., Hell, S. W., & Nagerl, U. V. (2011). STED nanoscopy of actin dynamics in synapses deep inside living brain slices. Biophysical Journal, 101, 1277–1284. doi: 10.1016/j.bpj.2011.07.027.
  Vadakkan, T. J., Culver, J. C., Gao, L., Anhut, T., & Dickinson, M. E. (2009). Peak multiphoton excitation of mCherry using an optical parametric oscillator (OPO). Journal of Fluorescence, 19, 1103–1109. doi: 10.1007/s10895‐009‐0510‐y.
  Vicidomini, G., Schonle, A., Ta, H., Han, K. Y., Moneron, G., Eggeling, C., & Hell, S. W. (2013). STED nanoscopy with time‐gated detection: Theoretical and experimental aspects. PLoS One, 8, e54421. doi: 10.1371/journal.pone.0054421.
  Wallace, W., Schaefer, L. H., & Swedlow, J. R. (2001). A workingperson's guide to deconvolution in light microscopy. Biotechniques, 31, 1076–1078, 1080, 1082 passim.
  Willig, K. I., Harke, B., Medda, R., & Hell, S. W. (2007). STED microscopy with continuous wave beams. Nature Methods, 4, 915–918. doi: 10.1038/nmeth1108.
  Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R., & Hell, S. W. (2006). STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature, 440, 935–939. doi: 10.1038/nature04592.
  Winter, P. W., Chandris, P., Fischer, R. S., Wu, Y., Waterman, C. M., & Shroff, H. (2015). Incoherent structured illumination improves optical sectioning and contrast in multiphoton super‐resolution microscopy. Optics Express, 23, 5327–5334. doi: 10.1364/OE.23.005327.
  Winter, P. W., York, A. G., Nogare, D. D., Ingaramo, M., Christensen, R., Chitnis, A., … Shroff, H. (2014). Two‐photon instant structured illumination microscopy improves the depth penetration of super‐resolution imaging in thick scattering samples. Optica, 1, 181–191. doi: 10.1364/OPTICA.1.000181.
  Wu, Y., Ghitani, A., Christensen, R., Santella, A., Du, Z., Rondeau, G., … Shroff, H. (2011). Inverted selective plane illumination microscopy (iSPIM) enables coupled cell identity lineaging and neurodevelopmental imaging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 108, 17708–17713. doi: 10.1073/pnas.1108494108.
  Wu, Y., Wawrzusin, P., Senseney, J., Fischer, R. S., Christensen, R., Santella, A., … Shroff, H. (2013). Spatially isotropic four‐dimensional imaging with dual‐view plane illumination microscopy. Nature Biotechnology, 31, 1032–1038. doi: 10.1038/nbt.2713.
  Wu, Y., Chandris, P., Winter, P. W., Kim, E. Y., Jaumouillé, V., Kumar, A., … Shroff, H. (2016). Simultaneous multiview capture and fusion improves spatial resolution in wide‐field and light‐sheet microscopy. Optica, 3, 897–910. doi: 10.1364/OPTICA.3.000897.
  York, A. G., Chandris, P., Nogare, D. D., Head, J., Wawrzusin, P., Fischer, R. S., … Shroff, H. (2013). Instant super‐resolution imaging in live cells and embryos via analog image processing. Nature Methods, 10, 1122–1126. doi: 10.1038/nmeth.2687.
PDF or HTML at Wiley Online Library