Laser‐Mediated Microlesions in Mouse Neocortex to Investigate Neuronal Degeneration and Regeneration

Johanna Jackson1, Alison J. Canty1, Lieven Huang2, Vincenzo De Paola3

1 These authors contributed equally to this work, 2 Australian Regenerative Medicine Institute, Monash University, Clayton, 3 MRC Clinical Sciences Centre, Imperial College London, London
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 2.24
DOI:  10.1002/0471142301.ns0224s73
Online Posting Date:  October, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

In vivo two‐photon (2P) imaging enables neural circuitry to be repeatedly visualized in both normal conditions and following trauma. This protocol describes how laser‐mediated neuronal microlesions can be created in the cerebral cortex using an ultrafast laser without causing a significant inflammatory reaction or compromising the blood‐brain barrier. Furthermore, directives are provided for the acute and chronic in vivo imaging of the lesion site, as well as for post‐hoc analysis of the lesion site in fixed tissue, which can be correlated with the live imaging phase. © 2015 by John Wiley & Sons, Inc.

Keywords: microlesion; live imaging; laser ablation; axotomy; 2‐photon microscopy; glial scar; axons; synapses; cortex

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Two‐Photon (2P) Imaging of Neuronal Structures in Mouse Cerebral Cortex
  • Basic Protocol 2: Pre‐Lesion Imaging
  • Basic Protocol 3: In Vivo Lesioning
  • Basic Protocol 4: Lesioning in Organotypic Brain Slices
  • Basic Protocol 5: Post‐Lesion Imaging
  • Basic Protocol 6: Post‐Mortem Imaging
  • Basic Protocol 7: Immunohistochemistry
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Two‐Photon (2P) Imaging of Neuronal Structures in Mouse Cerebral Cortex

  Materials
  • Mice
  • Isoflurane (Abbott)
  • Oxygen
  • 100 mg/ml ketamine (10‐ml stock solution)
  • 20 mg/ml xylazine (50‐ml stock solution)
  • Sterile saline solution
  • Sterile lubricant eye ointment (e.g., Vaseline or Lacrilube, Allergan)
  • Antiseptic solution (e.g., Iodine 10% in saline or Videne, Ecolab)
  • Induction chamber
  • Inhalational anesthesia vaporizer
  • Heating pad
  • Two‐photon (2P) microscope powered by an ultrafast laser (e.g., Coherent Chameleon Ultra II), 40×, 0.8‐NA water immersion objective or similar
  • Head fixation device (custom‐made) or stereotaxic frame
  • Cotton swabs (150‐mm length, wood shaft, Medical Wire)
  • Light‐proof cage

Basic Protocol 2: Pre‐Lesion Imaging

  Materials
  • In vivo imaging set up on 2P microscope stage (see protocol 1)
  • Dextran‐Texas Red (mol. wt. 10,000; Life Technologies, cat. no. D1828)
  • Sterile saline
  • Image acquisition software (PrairieView, ScanImage, or similar)

Basic Protocol 3: In Vivo Lesioning

For Materials, see Basic Protocols protocol 11 and protocol 22.

Basic Protocol 4: Lesioning in Organotypic Brain Slices

  Materials
  • Organotypic slice cultures
  • Tyrode's salt solution (see recipe or Sigma)
  • 35‐mm petri dishes

Basic Protocol 5: Post‐Lesion Imaging

For Materials, see protocol 1.

Basic Protocol 6: Post‐Mortem Imaging

  Materials
  • Paraformaldehyde (see recipe), ice cold
  • Phosphate buffer saline (PBS) (see recipe)
  • Sodium azide, optional
  • Agarose, optional
  • Dissection instruments
  • Small dissecting dish
  • Paperclip, optional
  • Additional reagents and equipment see protocol 1
CAUTION: Sodium azide (NaN 3) is poisonous; wear gloves.

Basic Protocol 7: Immunohistochemistry

  Materials
  • Dissected brains (see protocol 6)
  • Sucrose
  • PBS (see recipe)
  • Cresyl violet, optional
  • Sodium azide
  • Ketamine/xylazine
  • 2.5% glutaraldehyde (EM‐grade; Electron Microscopy Sciences, cat. no. 16200)
  • Paraformaldehyde (see recipe)
  • Glycerol, optional
  • Nail polish
  • Resin
  • Tangential vibratome or cryostat
  • Fine brush or glass stick
  • 24‐well dishes
  • Glass petri dishes
  • Glass slides and coverslips
  • Standard microscope with camera
  • Adobe Photoshop software
  • 2P microscope
  • Parafilm
  • 1.0‐ml microcentrifuge tubes
CAUTION: Sodium azide (NaN 3) is poisonous; wear gloves.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Allegra Mascaro, A.L., Sacconi, L., and Pavone, F.S. 2010. Multi‐photon nanosurgery in live brain. Front. Neuroenergetics 2:21.
  Allegra Mascaro, A.L., Cesare, P., Sacconi, L., Grasselli, G., Mandolesi, G., Maco, B., Knott, G., Huang, L., De Paola, V., Strata, P., and Pavone, F.S. 2013. In vivo single branch axotomy induces GAP‐43 dependent sprouting and synaptic remodeling in cerebellar cortex. Proc. Natl. Acad. Sci. U.S.A. 110:10824‐10829.
  Bishop, D., Nikic, I., Brinkoetter, M., Knecht, S., Potz, S., Kerschensteiner, M., and Misgeld, T. 2011. Near‐infrared branding efficiently correlates light and electron microscopy. Nat. Methods 8:568‐570.
  Canty, A.J., Huang, L., Jackson, J.S., Little, G.E., Knott, G., Maco, B., and De Paola, V. 2013a. In‐vivo single neuron axotomy triggers axon regeneration to restore synaptic density in specific cortical circuits. Nat. Commun. 4:2038.
  Canty, A.J., Teles‐Grilo Ruivo, L.M., Nesarajah, C., Song, S., Jackson, J.S., Little, G.E., and De Paola, V. 2013b. Synaptic elimination and protection after minimal injury depend on cell type and their prelesion structural dynamics in the adult cerebral cortex. J. Neurosci. 33:10374‐10383.
  De Paola, V., Arber, S., and Caroni, P. 2003. AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat. Neurosci. 6:491‐500.
  De Roo, M., Klauser, P., and Muller, D. 2008. LTP promotes a selective long‐term stabilization and clustering of dendritic spines. PLoS Biol. 6:e219.
  Feng, G., Mellor, R.H., Bernstein, M., Keller‐Peck, C., Nguyen, Q.T., Wallace, M., Nerbonne, J.M., Lichtman, J.W., and Sanes, J.R. 2000. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron 28:41‐51.
  Gogolla, N., Galimberti, I., DePaola, V., and Caroni, P. 2006. Preparation of organotypic hippocampal slice cultures for long‐term live imaging. Nat. Protoc. 1:1165‐1171.
  Graciarena, M., Dambly‐Chaudiere, C., and Ghysen, A. 2014. Dynamics of axonal regeneration in adult and aging zebrafish reveal the promoting effect of a first lesion. Proc. Natl. Acad. Sci. U.S.A. 111:1610‐1615.
  Grillo, F.W., Song, S., Teles‐Grilo Ruivo, L.M., Huang, L., Gao, G., Knott, G.W., Maco, B., Ferretti, V., Thompson, D., Little, G.E., and De Paola, V. 2013. Increased axonal bouton dynamics in the aging mouse cortex. Proc. Natl. Acad. Sci. U.S.A. 110:E1514‐E1523.
  Holtmaat, A., Bonhoeffer, T., Chow, D.K., Chuckowree, J., De Paola, V., Hofer, S.B., Hubener, M., Keck, T., Knott, G., Lee, W.C., Mostany, R., Mrsic‐Flogel, T.D., Nedivi, E., Portera‐Cailliau, C., Svoboda, K., Trachtenberg, J.T., and Wilbrecht, L. 2009. Long‐term, high‐resolution imaging in the mouse neocortex through a chronic cranial window. Nat. Protoc. 4:1128‐1144.
  Isshiki, M. and Okabe, S. 2014. Evaluation of cranial window types for in vivo two‐photon imaging of brain microstructures. Microscopy 63:53‐63.
  Kanamori, A., Catrinescu, M.M., Belisle, J.M., Costantino, S., and Levin, L.A. 2012. Retrograde and Wallerian axonal degeneration occur synchronously after retinal ganglion cell axotomy. Am. J. Pathol. 181:62‐73.
  Kerschensteiner, M., Schwab, M.E., Lichtman, J.W., and Misgeld, T. 2005. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med. 11:572‐577.
  Kleele, T., Marinkovic, P., Williams, P.R., Stern, S., Weigand, E.E., Engerer, P., Naumann, R., Hartmann, J., Karl, R.M., Bradke, F., Bishop, D., Herms, J., Konnerth, A., Kerschensteiner, M., Godinho, L., and Misgeld, T. 2014. An assay to image neuronal microtubule dynamics in mice. Nat. Commun. 5:4827.
  Lorenzana, A. O., Lee, J. K., Mui, M., Chang, A., and Zheng, B. 2015. A surviving intact branch stabilizes remaining axon architecture after injury as revealed by in vivo imaging in the mouse spinal cord. Neuron 86:947‐954.
  Maco, B., Holtmaat, A., Cantoni, M., Kreshuk, A., Straehle, C.N., Hamprecht, F.A., and Knott, G.W. 2013. Correlative in vivo 2 photon and focused ion beam scanning electron microscopy of cortical neurons. PLoS One 8:e57405.
  Marker, D.F., Tremblay, M.E., Lu, S.M., Majewska, A.K., and Gelbard, H.A. 2010. A thin‐skull window technique for chronic two‐photon in vivo imaging of murine microglia in models of neuroinflammation. J. Vis. Exp. pii: 2059. doi:10.3791/2059.
  Martin, S.M., O'Brien, G.S., Portera‐Cailliau, C., and Sagasti, A. 2010. Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 137:3985‐3994.
  Misgeld, T. and Kerschensteiner, M. 2006. In vivo imaging of the diseased nervous system. Nat. Rev. Neurosci. 7:449‐463.
  Mostany, R. and Portera‐Cailliau, C. 2008. A method for 2‐photon imaging of blood flow in the neocortex through a cranial window. J. Vis. Exp. pii: 678. doi: 10.3791/678.
  Nimmerjahn, A., Kirchhoff, F., and Helmchen, F. 2005. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314‐1318.
  Nishimura, N., Schaffer, C.B., Friedman, B., Tsai, P.S., Lyden, P.D., and Kleinfeld, D. 2006. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: Three models of stroke. Nat. Methods 3:99‐108.
  O'Brien, G.S., Martin, S.M., Sollner, C., Wright, G.J., Becker, C.G., Portera‐Cailliau, C., and Sagasti, A. 2009. Developmentally regulated impediments to skin reinnervation by injured peripheral sensory axon terminals. Curr. Biol. 19:2086‐2090.
  Richards, D.A., De Paola, V., Caroni, P., Gahwiler, B.H., and McKinney, R.A. 2004. AMPA‐receptor activation regulates the diffusion of a membrane marker in parallel with dendritic spine motility in the mouse hippocampus. J. Physiol. 558:503‐512.
  Roome, C.J. and Kuhn, B. 2014. Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology. Front. Cell. Neurosci. 8:379.
  Rosenberg, A.F., Wolman, M.A., Franzini‐Armstrong, C., and Granato, M. 2012. In vivo nerve‐macrophage interactions following peripheral nerve injury. J. Neurosci. 32:3898‐3909.
  Sacconi, L., O'Connor, R.P., Jasaitis, A., Masi, A., Buffelli, M., and Pavone, F.S. 2007. In vivo multiphoton nanosurgery on cortical neurons. J. Biomed. Opt. 12:050502.
  Skala, M.C., Riching, K.M., Gendron‐Fitzpatrick, A., Eickhoff, J., Eliceiri, K.W., White, J.G., and Ramanujam, N. 2007. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc. Natl. Acad. Sci. U.S.A. 104:19494‐19499.
  Yanik, M.F., Cinar, H., Cinar, H.N., Chisholm, A.D., Jin, Y., and Ben‐Yakar, A. 2004. Neurosurgery: Functional regeneration after laser axotomy. Nature 432:822.
  Ylera, B., Erturk, A., Hellal, F., Nadrigny, F., Hurtado, A., Tahirovic, S., Oudega, M., Kirchhoff, F., and Bradke, F. 2009. Chronically CNS‐injured adult sensory neurons gain regenerative competence upon a lesion of their peripheral axon. Curr. Biol. 19:930‐936.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library