Tracking Neuronal Migration in Adult Brain Slices

Karen Bakhshetyan1, Armen Saghatelyan2

1 Cellular Neurobiology Unit, Institut Universitaire en santé mentale de Québec, Quebec City, 2 Department of Psychiatry and Neuroscience, Université Laval, Quebec City
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 3.28
DOI:  10.1002/0471142301.ns0328s71
Online Posting Date:  April, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Neuronal migration is one of the fundamental processes underlying the proper assembly and function of neural circuitry. The majority of neuronal precursors are generated far away from their sites of integration and need to migrate substantial distances to reach their final destination. Neuronal migration occurs not only in the embryonic brain but also in a few regions of the adult brain such as the olfactory bulb (OB). The mechanisms orchestrating cell migration in the adult brain are, however, poorly understood, despite their clinical relevance. Here we describe a method for time‐lapse imaging of cell migration in acute brain slices. This method, combined with genetic and/or pharmacological manipulations of different molecular pathways, makes it possible to determine the dynamics and molecular mechanisms of cell migration in the adult brain. In addition, time‐lapse imaging in acute brain slices makes it possible to monitor cell movement in a microenvironment that closely resembles in vivo conditions and to study neuroblast displacement along with other cellular elements such as astrocytes and blood vessels. © 2015 by John Wiley & Sons, Inc.

Keywords: cell migration; time‐lapse imaging; olfactory bulb; rostral migratory stream; blood vessels

PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Time‐Lapse Video‐Imaging of Neuronal Migration in Adult Acute Brain Slices
  • Support Protocol 1: Stereotaxic Injection of Viral Vectors into the SVZ of the Adult Mouse
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Time‐Lapse Video‐Imaging of Neuronal Migration in Adult Acute Brain Slices

  • Adult C57Bl/6 mice (Charles River)
  • Acute brain slices prepared from adult mice infected with viral particles 3 to 7 days (for monitoring tangential migration in the RMS) or 7 to 12 days (for monitoring radial migration in the OB and the RMS of the OB; see protocol 2Support Protocol)
  • Artificial cerebro‐spinal fluid (ACSF; see recipe)
  • Cutting solution (see recipe)
  • Dextran Texas Red (Molecular Probes)
  • 4% agar block (prepared using agar powder [Sigma‐Aldrich]; see recipe)
  • 95% O 2/5% CO 2
  • Surgical instruments for extracting the brain (e.g., scissors, scalpel, forceps)
  • Vibratome (Microm HM 650 V; Thermo Scientific)
  • Fluorescence wide‐field upright microscope, with motorized Z‐drive (BX61WI; Olympus)
  • 482/35 nm and 536/40 nm excitation and emission filters for imaging GFP‐labeled cells
  • 14‐bit cooled CCD camera with 1392 × 1040 imaging pixels (CoolSnap HQ2; Photometrics)
  • 40× water immersion objective lens with a 0.8 numerical aperture or higher (Olympus)
  • Illumination system, equipped with a 175 W xenon lamp (30 to 100 msec excitation time per z plane, Lambda DG‐4; Sutter Instruments)
  • Imaging chamber, mounted on a microscope stage (PH1 Series 20; Harvard Apparatus)
  • Automatic heating system (to maintain temperature in the imaging chamber at ∼32°C; Harvard Apparatus, cat. no. TC‐344B)
  • Multidimensional time‐lapse data acquisition software (MetaMorph, Molecular Devices)
  • Software for Z‐stack image acquisition, every 15 sec for 1 hr (usually 5 to 10 z‐planes at 3‐μm intervals; MetaMorph, Molecular Devices)
  • Custom‐made ACSF delivery system for continuous perfusion of slices with oxygenated ACSF at a 1 to 2 ml/min flow rate
  • Slice fixation mesh (nylon with 0.12‐mm diameter and ∼1‐mm2 holes)
NOTE: For standard animal techniques including stereotaxic surgery, anesthesia, and analgesia, see and .NOTE: The imaging and acquisition systems described in this unit are used in the authors’ laboratory and serve only as examples of the equipment required to perform time‐lapse imaging in acute slices. Other commercial and custom‐made systems can be used. However, we strongly recommend using imaging systems that can acquire time‐lapse images at least every 15 sec. This is important to ensure the unambiguous identification of the migratory and stationary phases of neuronal precursors, to better understand the dynamics of cell migration.

Support Protocol 1: Stereotaxic Injection of Viral Vectors into the SVZ of the Adult Mouse

  • Adult C57Bl/6 mice (Charles River)
  • Proviodine (Rougier) or 70% ethanol (Sigma‐Aldrich)
  • Paraffin oil (Sigma‐Aldrich)
  • Solution containing viral particles (obtained from Vector Core Facilities, Institut Universitaire en santé mentale de Québec or University of North Carolina)
  • Ketamine (Bioniche)/xylazine (Bimeda) or isoflurane (PPC)
  • Lidocaine (AstraZeneca)
  • Anafen (Merial)
  • Micropipet puller
  • Stereotaxic injection apparatus equipped with a digital stereotaxic coordinate read‐out system (WPI)
  • Mouse adaptor mounted on a stereotaxic apparatus (WPI)
  • Sterile surgical instruments (e.g., scissors, scalpels, forceps)
  • Microdrill system
  • Heating pad
  • Nanoliter injector with nanoliter injector controller (WPI)
  • Binocular microscope
NOTE: For standard animal techniques including stereotaxic surgery, anesthesia, and analgesia, see and .
PDF or HTML at Wiley Online Library


Literature Cited

Literature Cited
   Alvarez‐Buylla, A. and Garcia‐Verdugo, J.M. 2002. Neurogenesis in adult subventricular zone. J. Neurosci. 22:629‐634.
   Anton, E.S. , Ghashghaei, H.T. , Weber, J.L. , McCann, C. , Fischer, T.M. , Cheung, I.D. , Gassmann, M. , Messing, A. , Klein, R. , Schwab, M.H. , Lloyd, K.C. , and Lai, C. 2004. Receptor tyrosine kinase ErbB4 modulates neuroblast migration and placement in the adult forebrain. Nat. Neurosci. 7:1319‐1328.
   Arvidsson, A. , Collin, T. , Kirik, D. , Kokaia, Z. , and Lindvall, O. 2002. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8:963‐970.
   Belvindrah, R. , Hankel, S. , Walker, J. , Patton, B.L. , and Muller, U. 2007. Beta1 integrins control the formation of cell chains in the adult rostral migratory stream. J. Neurosci. 27:2704‐2717.
   Bolteus, A.J. and Bordey, A. 2004. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci. 24:7623‐7631.
   Bortone, D. and Polleux, F. 2009. KCC2 expression promotes the termination of cortical interneuron migration in a voltage‐sensitive calcium‐dependent manner. Neuron 62:53‐71.
   Bozoyan, L. , Khlghatyan, J. , and Saghatelyan, A. 2012. Astrocytes control the development of the migration‐promoting vasculature scaffold in the postnatal brain via VEGF signaling. J. Neurosci. 32:1687‐1704.
   Chiaramello, S. , Dalmasso, G. , Bezin, L. , Marcel, D. , Jourdan, F. , Peretto, P. , Fasolo, A. , and De Marchis, S. 2007. BDNF/TrkB interaction regulates migration of SVZ precursor cells via PI3‐K and MAP‐K signalling pathways. Eur. J. Neurosci. 26:1780‐1790.
   Comte, I. , Kim, Y. , Young, C.C. , van der Harg, J.M. , Hockberger, P. , Bolam, P.J. , Poirier, F. , and Szele, F.G. 2011. Galectin‐3 maintains cell motility from the subventricular zone to the olfactory bulb. J. Cell Sci. 124:2438‐2447.
   Conover, J.C. , Doetsch, F. , Garcia‐Verdugo, J.M. , Gale, N.W. , Yancopoulos, G.D. , and Alvarez‐Buylla, A. 2000. Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nat. Neurosci. 3:1091‐1097.
   Courtes, S. , Vernerey, J. , Pujadas, L. , Magalon, K. , Cremer, H. , Soriano, E. , Durbec, P. , and Cayre, M. 2011. Reelin controls progenitor cell migration in the healthy and pathological adult mouse brain. PLoS One 6:e20430.
   Cremer, H. , Lange, R. , Christoph, A. , Plomann, M. , Vopper, G. , Roes, J. , Brown, R. , Baldwin, S. , Kraemer, P. , Scheff, S. , Barthels, A. , Rajewsky, K. , and Wille, W. 1994. Inactivation of the N‐CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning. Nature 367:455‐459.
   David, L.S. , Schachner, M. , and Saghatelyan, A. 2013. The extracellular matrix glycoprotein tenascin‐R affects adult but not developmental neurogenesis in the olfactory bulb. J. Neurosci. 33:10324‐10339.
   Falk, A. and Frisen, J. 2005. New neurons in old brains. Ann. Med. 37:480‐486.
   Garcia‐Marques, J. , De Carlos, J.A. , Greer, C.A. , and Lopez‐Mascaraque, L. 2010. Different astroglia permissivity controls the migration of olfactory bulb interneuron precursors. Glia 58:218‐230.
   Grade, S. , Weng, Y.C. , Snapyan, M. , Kriz, J. , Malva, J.O. , and Saghatelyan, A. 2013. Brain‐derived neurotrophic factor promotes vasculature‐associated migration of neuronal precursors toward the ischemic striatum. PLoS One 8:e55039.
   Hack, I. , Bancila, M. , Loulier, K. , Carroll, P. , and Cremer, H. 2002. Reelin is a detachment signal in tangential chain‐migration during postnatal neurogenesis. Nat. Neurosci. 5:939‐945.
   Hu, H. , Tomasiewicz, H. , Magnuson, T. , and Rutishauser, U. 1996. The role of polysialic acid in migration of olfactory bulb interneuron precursors in the subventricular zone. Neuron 16:735‐743.
   Imitola, J. , Raddassi, K. , Park, K.I. , Mueller, F.J. , Nieto, M. , Teng, Y.D. , Frenkel, D. , Li, J. , Sidman, R.L. , Walsh, C.A. , Snyder, E.Y. , and Khoury, S.J. 2004. Directed migration of neural stem cells to sites of CNS injury by the stromal cell‐derived factor 1alpha/CXC chemokine receptor 4 pathway. Proc. Natl. Acad. Sci U. S. A. 101:18117‐18122.
   Kaneko, N. , Marin, O. , Koike, M. , Hirota, Y. , Uchiyama, Y. , Wu, J.Y. , Lu, Q. , Tessier‐Lavigne, M. , Alvarez‐Buylla, A. , Okano, H. , Rubenstein, J.L. , and Sawamoto, K. 2011. New neurons clear the path of astrocytic processes for their rapid migration in the adult brain. Neuron 67:213‐223.
   Khlghatyan, J. and Saghatelyan, A. 2012. Time‐lapse imaging of neuroblast migration in acute slices of the adult mouse forebrain. J. Vis. Exp. e4061. doi: 10.3791/4061.
   Law, A.K. , Pencea, V. , Buck, C.R. , and Luskin, M.B. 1999. Neurogenesis and neuronal migration in the neonatal rat forebrain anterior subventricular zone do not require GFAP‐positive astrocytes. Dev. Biol. 216:622‐634.
   Lindvall, O. , Kokaia, Z. , and Martinez‐Serrano, A. 2004. Stem cell therapy for human neurodegenerative disorders‐how to make it work. Nat. Med. 10:S42‐S50.
   Lois, C. and Alvarez‐Buylla, A. 1994. Long‐distance neuronal migration in the adult mammalian brain. Science 264:1145‐1148.
   Lois, C. , Garcia‐Verdugo, J.M. , and Alvarez‐Buylla, A. 1996. Chain migration of neuronal precursors. Science 271:978‐981.
   Marin, O. and Rubenstein, J.L. 2003. Cell migration in the forebrain. Annu. Rev. Neurosci. 26:441‐483.
   Mason, H.A. , Ito, S. , and Corfas, G. 2001. Extracellular signals that regulate the tangential migration of olfactory bulb neuronal precursors: Inducers, inhibitors, and repellents. J. Neurosci. 21:7654‐7663.
   Massouh, M. and Saghatelyan, A. 2010. De‐routing neuronal precursors in the adult brain to sites of injury: Role of the vasculature. Neuropharmacology 58:877‐883.
   Mejia‐Gervacio, S. , Murray, K. , and Lledo, P.M. 2012a. NKCC1 controls GABAergic signaling and neuroblast migration in the postnatal forebrain. Neural Dev. 6:4.
   Mejia‐Gervacio, S. , Murray, K. , Sapir, T. , Belvindrah, R. , Reiner, O. , and Lledo, P.M. 2012b. MARK2/Par‐1 guides the directionality of neuroblasts migrating to the olfactory bulb. Mol. Cell Neurosci. 49:97‐103.
   Murase, S. and Horwitz, A.F. 2002. Deleted in colorectal carcinoma and differentially expressed integrins mediate the directional migration of neural precursors in the rostral migratory stream. J. Neurosci. 22:3568‐3579.
   Ng, K.L. , Li, J.D. , Cheng, M.Y. , Leslie, F.M. , Lee, A.G. , and Zhou, Q.Y. 2005. Dependence of olfactory bulb neurogenesis on prokineticin 2 signaling. Science 308:1923‐1927.
   Ohab, J.J. , Fleming, S. , Blesch, A. , and Carmichael, S.T. 2006. A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26:13007‐13016.
   Ono, K. , Tomasiewicz, H. , Magnuson, T. , and Rutishauser, U. 1994. N‐CAM mutation inhibits tangential neuronal migration and is phenocopied by enzymatic removal of polysialic acid. Neuron 13:595‐609.
   Paratcha, G. , Ibanez, C.F. , and Ledda, F. 2006. GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol. Cell Neurosci. 31:505‐514.
   Peretto, P. , Giachino, C. , Aimar, P. , Fasolo, A. , and Bonfanti, L. 2005. Chain formation and glial tube assembly in the shift from neonatal to adult subventricular zone of the rodent forebrain. J. Comp. Neurol. 487:407‐427.
   Platel, J.C. , Heintz, T. , Young, S. , Gordon, V. , and Bordey, A. 2008. Tonic activation of GLUK5 kainate receptors decreases neuroblast migration in whole‐mounts of the subventricular zone. J. Physiol. 586:3783‐3793.
   Saghatelyan, A. 2009. Role of blood vessels in the neuronal migration. Semin. Cell Dev. Biol. 20:744‐750.
   Saghatelyan, A. , de Chevigny, A. , Schachner, M. , and Lledo, P.M. 2004. Tenascin‐R mediates activity‐dependent recruitment of neuroblasts in the adult mouse forebrain. Nat. Neurosci. 7:347‐356.
   Snapyan, M. , Lemasson, M. , Brill, M.S. , Blais, M. , Massouh, M. , Ninkovic, J. , Gravel, C. , Berthod, F. , Gotz, M. , Barker, P.A. , Parent, A. , and Saghatelyan, A. 2009. Vasculature guides migrating neuronal precursors in the adult mammalian forebrain via brain‐derived neurotrophic factor signaling. J. Neurosci. 29:4172‐4188.
   Whitman, M.C. , Fan, W. , Rela, L. , Rodriguez‐Gil, D.J. , and Greer, C.A. 2009. Blood vessels form a migratory scaffold in the rostral migratory stream. J. Comp. Neurol. 516:94‐104.
   Wittko, I.M. , Schanzer, A. , Kuzmichev, A. , Schneider, F.T. , Shibuya, M. , Raab, S. , and Plate, K.H. 2009. VEGFR‐1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J. Neurosci. 29:8704‐8714.
   Yan, Y.P. , Sailor, K.A. , Lang, B.T. , Park, S.W. , Vemuganti, R. , and Dempsey, R.J. 2007. Monocyte chemoattractant protein‐1 plays a critical role in neuroblast migration after focal cerebral ischemia. J. Cereb. Blood Flow Metab. 27:1213‐1224.
PDF or HTML at Wiley Online Library