Overview of Neural Gene Expression

Rachael L. Neve1, Kim A. Neve2

1 Harvard Medical School and McLean Hospital, Belmont, Massachusetts, 2 Oregon Health Sciences University and Veterans Affairs Medical Center, Portland, Oregon
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 4.5
DOI:  10.1002/0471142301.ns0405s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This overview describes issues that must be considered before attempting to express neural cDNAs in mammalian cells, including the choice of expression vector and cell type. Considerations for introducing recombinant vectors into cells are discussed along with a comparison of achieving stable or transient expression. Finally, the appropriate promoter is crucial and must be chosen to fit the design of the expression system.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Choice of Expression Vector
  • Choice of Cell Type
  • Introducing Recombinant Vectors into Cells
  • Transient or Stable Gene Expression
  • Choice of Promoter
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Baim, S.B., Labow, M.A., Levine, A.J., and Shenk, T. 1991. A chimeric mammalian transactivator based on the lac repressor that is regulated by temperature and isopropyl‐β‐D‐thiogalactopyranoside. Proc. Natl. Acad. Sci. U.S.A. 88: 5072‐ 5076.
   Donis, J.A., Michelman, M.V., and Neve, R.L. 1993. Comparison of expression of a series of mammalian vector promoters in the neuronal cell lines PC12 and HT4. BioTechniques 15:786‐787
   Fuerst, T.R., Niles, E.G., Studier, F.W., and Moss, B. 1986. Eukaryotic transient‐expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc. Natl. Acad. Sci. U.S.A. 83: 8122‐ 8126.
   Gossen, M. and Bujard, H. 1992. Tight control of gene expression in mammalian cells by tetracycline‐responsive promoters. Proc. Natl. Acad. Sci. U.S.A. 89: 5547‐ 5551.
   Littlewood, T.D., Hancock, D.C., Danielian, P.S., Parker, M.G., and Evan, G.I. 1995. A modified oestrogen receptor ligand‐binding domain as an improved switch for the regulation of heterologous proteins. Nucl. Acids Res. 23: 1686‐ 1690.
   Luckow, V.A. and Summers, M.D. 1988. Trends in the development of baculovirus expression vectors. Bio/Technology 6: 47‐ 55.
   Neve, R.L. and Geller, A.I. 1996. A defective herpes simplex virus vector system for gene delivery into the brain: Comparison with alternative gene delivery systems and usefulness for gene therapy. Clinical Neuroscience 3: 262‐ 267.
   No, D., Yao, T.P., and Evans, R.M. 1996. Ecdysone‐inducible gene expression in mammalian cells and mice. Proc. Natl. Acad. Sci. U.S.A. 93: 3346‐ 3351.
   Rivera, V.M., Clackson, T., Nateson, S., Pollock, R., Amara, J.F., Keenen, T., Magari, S.R., Phillips, T., Courage, N.L., Cerasoli, F., Holt, D.A. Jr., and Gilman, M. 1996. A humanized system for pharmacologic control of gene expression Nature Med. 2: 1028‐ 1032.
   Shockett, P.E. and Schatz, D.G. 1996. Diverse strategies for tetracycline‐regulated inducible gene expression. Proc. Natl. Acad. Sci. U.S.A. 93: 5173‐ 5176.
   Xia, Z., Dudek, H., Miranti, C.K., and Greenberg, M.E. 1996. Calcium influx via the NMDA receptor induces immediate early gene transcription by a MAP kinase/ERK–dependent mechanism. J.Neurosci. 16: 5425‐ 5436.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library