Mutagenesis Approaches for Elucidation of Protein Structure‐Function Relationships

Catherine D. Strader1

1 Schering‐Plough Research Institute, Kenilworth, New Jersey
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 4.9
DOI:  10.1002/0471142301.ns0409s03
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Several mutagenesis strategies have been used to allow the identification of specific receptor‐ligand interactions to support the docking of ligands within various receptor models. The strengths and limitations of each strategy are discussed in this overview. Large‐scale mapping is described using deletion and chimeric receptors. Fine tuning with single residue replacements is also covered along with two‐dimensional approaches.

PDF or HTML at Wiley Online Library

Table of Contents

  • Large‐Scale Mapping: Deletions and Chimeric Receptors
  • Fine‐Tuning with Single‐Residue Replacements and Two‐Dimensional Approaches
  • Conclusion
  • Literature Cited
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Dixon, R.A.F., Sigal, I.S., Rands, E., Register, R.B., Candelore, M.R., Blake, A.D., and Strader, C.D. 1987. Ligand binding to the β‐adrenergic receptor involves its rhodopsin‐like core. Nature 326:73‐77.
   Fong, T.M., Cascieri, M.A., Yu, H., Bansal, A., Swain, C., and Strader, C.D. 1993. Amino‐aromatic interaction between histidine‐197 of the human neurokinin‐1 receptor and CP‐96,345. Nature 362:350‐353.
   Fong, T.M., Yu, H., Cascieri, M.A., Underwood, D., Swain, C.J., and Strader, C.D. 1994. The role of histidine‐265 in antagonist binding to the neurokinin‐1 receptor. J. Biol. Chem. 269:2728‐2732.
   Gether, U., Johansen, T.E., Snider, R.M., Lowe, J.A., Nakanishi, S., and Schwartz, T.W. 1993. Different binding epitopes on the NK1 receptor for substance P and a non‐peptide antagonist. Nature 362:345‐348.
   Guan, X‐M., Perontka, S.J., and Kobilka, B.K. 1992. Identification of a single amino acid residue responsible for the binding of a class of β‐adrenergic receptor antagonists to 5‐hydroxy tryptamine‐1A receptors. Mol. Pharmacol. 41:695‐698.
   Rucker, J., Samson, M., Doranz, B.J., Libert, F., Berson, J.F., Yi, Y., Smyth, R.J., Collman, R.G., Broder, C.C., Vassart, G., Doms, R.W. and Parmentier, M. 1996. Regions in β‐chemokine receptors CCR5 and CCR2b that determine HIV‐1 cofactor specificity. Cell 87:437‐446.
   Schertler, G.F., Villa, C., and Henderson, R. 1993. Projection structure of rhodopsin. Nature 362:770‐772.
   Strader, C.D., Sigal, I.S., Candelore, M.R., Rands, E., Hill, W.S., and Dixon, R.A.F. 1988. Conserved aspartic acid residues 79 and 113 of the β‐adrenergic receptor have different roles in receptor function. J. Biol. Chem. 263:10267‐10271.
   Strader, C.D., Candelore, M.R., Hill, W.S., Sigal, I.S., and Dixon, R.A.F. 1989. Identification of two serine residues involved in agonist activation of the β‐adrenergic receptor. J. Biol. Chem. 264:13572‐13578.
   Strader, C.D., Gaffney, T., Sugg, E., Candelore, M., Keys, R., Patchett, A., and Dixon, R. 1991. Allele‐specific activation of genetically engineered receptors. J. Biol. Chem. 256:5‐8.
   Strader, C.D., Fong, T.M., Tota, M.R. Underwood, D., and Dixon, R.A.F. 1994. Structure and function of G protein–coupled receptors. Annu. Rev. Biochem. 63:101‐132.
PDF or HTML at Wiley Online Library