Gene Delivery Using Helper Virus‐Free HSV‐1 Amplicon Vectors

Andrea S. Laimbacher1, Cornel Fraefel1

1 University of Zurich, Zurich, Switzerland
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 4.14
DOI:  10.1002/0471142301.ns0414s60
Online Posting Date:  July, 2012
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Herpes simplex virus type 1 (HSV‐1)‐based amplicon vectors contain only a very small percentage of the 152‐kbp viral genome. Consequently, replication and packaging of amplicons depend on helper functions that are provided either by replication‐defective mutants of HSV‐1 or by replication‐competent, but packaging‐defective, HSV‐1 genomes. Sets of cosmids that overlap and represent the entire HSV‐1 genome can form, via homologous recombination, circular replication‐competent viral genomes, which give rise to infectious virus progeny. However, if the DNA cleavage/packaging signals are deleted, reconstituted virus genomes are not packageable, but still provide all the helper functions required for the packaging of cotransfected amplicon DNA. The resulting stocks of packaged amplicon vectors are essentially free of contaminating helper virus. This unit describes the cotransfection of amplicon and cosmid or bacterial artificial chromosome (BAC) DNA into 2‐2 cells by cationic liposome‐mediated transfection and the harvesting of packaged vector particles. Support protocols provide methods for preparing cosmid and BAC DNA and determining the titers of amplicon stocks. Curr. Protoc. Neurosci. 60:4.14.1‐4.14.21. © 2012 by John Wiley & Sons, Inc.

Keywords: Herpes simplex virus; HSV‐1; amplicon; helper virus free; cotransfection; cosmid; BAC (bacterial artificial chromosome); gene delivery

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of Helper Virus–Free Amplicon Stocks
  • Support Protocol 1: Preparation of HSV‐1 Cosmid DNA for Transfection
  • Support Protocol 2: Preparation of HSV‐1 BAC DNA for Transfection
  • Support Protocol 3: Titration of Amplicon Stocks
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of Helper Virus–Free Amplicon Stocks

  Materials
  • 2‐2 cells (Smith et al., )
  • Dulbecco's modified Eagle medium (Life Technologies) with 10% and 6% fetal bovine serum (DMEM/10% FBS and DMEM/6% FBS)
  • G418 (Geneticin; Life Technologies)
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • 0.25% trypsin/0.02% EDTA (Life Technologies)
  • Opti‐MEM I reduced‐serum medium (Life Technologies)
  • HSV‐1 amplicon DNA (maxiprep DNA isolated from E. coli)
  • PacI‐digested cosmid DNA of set C6Δa48Δa (see protocol 2) or HSV‐1 BAC fHSVΔpacΔ27ΔKn (see protocol 3)
  • pEBHICP27 plasmid DNA
  • Lipofectamine Reagent (Life Technologies)
  • Plus Reagent (Life Technologies)
  • Liquid nitrogen
  • 10%, 25 %, 30%, and 60% (w/v) sucrose in PBS
  • Humidified 37°C, 5% CO 2 incubator
  • 75‐cm2 tissue culture flasks
  • Hemacytometer
  • 60‐mm diameter tissue culture dishes
  • 15‐ml conical centrifuge tubes
  • Rubber policeman
  • 37°C water bath
  • Probe sonicator
  • 0.45‐µm syringe‐tip polyethersulfone membrane filters (Sarstedt)
  • 20‐ml disposable syringes
  • 30‐ml centrifuge tube
  • Beckman Ultra‐Clear centrifuge tubes (25 × 89 mm and 14 × 95 mm)
  • Ultracentrifuge with Beckman SW28 and SW40 rotors
  • Fiber‐optic illuminator
NOTE: All cell culture incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise stated.

Support Protocol 1: Preparation of HSV‐1 Cosmid DNA for Transfection

  Materials
  • E. coli clones of HSV‐1 cosmid set C6Δa48Δa: includes cos6Δa, cos14, cos28, cos48Δa, and cos56 (Cunningham and Davison, ; Fraefel et al., ; see Fig. )
  • SOB medium containing 50 µg/ml ampicillin (SOB/amp; see recipe)
  • Dimethyl sulfoxide (DMSO)
  • Plasmid Maxi Kit (Qiagen): includes Qiagen‐tip 500 columns and buffers P1, P2, P3, QBT, QC, and QF (prewarm buffer QF to 65°C)
  • Isopropanol
  • 70% (v/v) and 100% (v/v) ethanol
  • TE buffer, pH 7.5 ( appendix 2A)
  • Restriction endonucleases DraI, KpnI, and PacI
  • High‐molecular‐weight DNA standard (Life Technologies)
  • 1‐kb DNA ladder (Life Technologies)
  • Electrophoresis‐grade agarose
  • TAE electrophoresis buffer (see recipe)
  • 1 mg/ml ethidium bromide in H 2O
  • 25:24:1 (v/v) phenol/chloroform/isoamyl alcohol ( appendix 2A)
  • 24:1 (v/v) chloroform/isoamyl alcohol ( appendix 2A)
  • 3 M sodium acetate, pH 5.5 ( appendix 2A)
  • 17 × 100–mm graduated snap‐cap tubes (e.g., Falcon 2059), sterile
  • 2‐liter flask
  • 37°C shaker incubator
  • 250‐ml polypropylene centrifuge tubes
  • Sorvall GSA and SS‐34 rotors (or equivalent)
  • 30‐ml polypropylene tubes
  • 65° and 37°C water baths
  • Additional reagents and equipment for quantitation of DNA by absorption spectroscopy ( appendix 1K), restriction endonuclease digestion of DNA ( appendix 1M), agarose gel electrophoresis ( appendix 1N), and purification of DNA ( appendix 1G)

Support Protocol 2: Preparation of HSV‐1 BAC DNA for Transfection

  Materials
  • LB medium containing 12.5 µg/ml chloramphenicol ( appendix 2A)
  • E. coli clones of HSV‐1 BAC fHSVΔpacΔ27ΔKn and plasmid pEBHICP27 (Saeki et al., )
  • Dimethyl sulfoxide (DMSO)
  • Plasmid Maxi Kit (Qiagen): includes Qiagen‐tip 500 columns and buffers P1, P2, P3, QBT, QC, and QF (prewarm buffer QF to 65°C)
  • Isopropanol
  • 70% (v/v) ethanol, chilled
  • TE buffer, pH 7.4 ( appendix 2A)
  • CsCl (Sigma)
  • 10 mg/ml and 1mg/ml ethidium bromide in H 2O
  • Paraffin oil
  • TE/CsCl solution: prepared by dissolving 3 g CsCl in 3 ml TE buffer, pH 7.4 ( appendix 2A); store up to several months at room temperature
  • n‐butanol (Merck)
  • Restriction endonucleases HindIII and KpnI
  • High‐molecular‐weight DNA standard (Life Technologies)
  • 1‐kb DNA ladder (Life Technologies)
  • Electrophoresis‐grade agarose
  • TAE electrophoresis buffer (see recipe)
  • 17 × 100–mm graduated snap‐cap tubes (e.g., Falcon 2059), sterile
  • 37°C shaker incubator
  • 2‐liter flask
  • 250‐ml polypropylene centrifuge tubes
  • Sorvall GSA and SS‐34 rotors (or equivalent)
  • 30‐ml polypropylene centrifuge tube
  • 120‐mm diameter folded filters (Macherey‐Nagel)
  • 65° and 37°C water baths
  • 13 × 51–mm Ultra‐Clear centrifuge tubes (Beckman)
  • Sorvall TV 865 ultracentrifuge rotor
  • Dialysis cassettes (Slide‐A‐Lyzer, 10,000 MWCO; Pierce)
  • 1‐ml disposable syringes
  • 21‐G and 36‐G hypodermic needles
  • UV‐lamp (366 nm)
  • UV spectrophotometer
  • Additional reagents and equipment for quantitation of DNA by absorption spectroscopy ( appendix 1K), restriction endonuclease digestion of DNA ( appendix 1M), and agarose gel electrophoresis ( appendix 1N)

Support Protocol 3: Titration of Amplicon Stocks

  Materials
  • Vero (clone 76; ECACC #85020205), BHK (clone 21; ECACC #85011433), or 293 (ATCC #1573) cells
  • DMEM (e.g., Life Technologies) supplemented with 10% and 2% FBS (DMEM/10% FBS and DMEM/2% FBS; appendix 2A)
  • Phosphate‐buffered saline (PBS; appendix 2A)
  • Samples collected from vector stocks (see protocol 1, steps 17, 22a, or 24b)
  • 4% (w/v) paraformaldehyde solution, pH 7.0 (unit 4.13)
  • X‐gal staining solution (see recipe), GST solution (see recipe), or appropriate primary and secondary antibodies
  • 24‐well tissue culture plates
  • Humidified 37°C, 5% CO 2 incubator
  • Inverted fluorescence microscope or inverted light microscope
NOTE: All cell culture incubations are performed in a humidified 37°C, 5% CO 2 incubator unless otherwise stated.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Aboody‐Guterman, K.S., Pechan, P.A., Rainov, N.G., Sena‐Esteves, M., Jacobs, A., Snyder, E.Y., Wild, P., Schraner, E., Tobler, K., Breakefield, X.O., and Fraefel, C. 1997. Green fluorescent protein as a reporter for retrovirus and helper virus‐free HSV‐1 amplicon vector‐mediated gene transfer into neural cells in culture and in vivo. Neuroreport 8:3801‐3808.
   Cunningham, C. and Davison, A.J. 1993. A cosmid‐based system for constructing mutants of herpes simplex virus type 1. Virology 197:116‐124.
   D'Antuono, A., Laimbacher, A.S., La Torre, J., Tribulatti, V., Romanutti, C., Zamorano, P., Quattrocchi, V., Schraner, E.M., Ackermann, M., Fraefel, C., and Mattion, N. 2010. HSV‐1 amplicon vectors that direct the in situ production of foot‐and‐mouth disease virus antigens in mammalian cells can be used for genetic immunization. Vaccine 28:7363‐7372.
   de Silva, S. and Bowers, W.J. 2009 Herpes virus amplicon vectors. Viruses 1:594‐629.
   Fraefel, C., Song, S., Lim, F., Lang, P., Yu, L., Wang, Y., Wild, P., and Geller, A.I. 1996. Helper virus‐free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70:7190‐7197.
   Fraefel, C., Jacoby, D.R., Lage, C., Hilderbrand, H., Chou, J.Y., Alt, F.W., Breakefield, X.O., and Majzoub, J.A. 1997. Gene transfer into hepatocytes mediated by helper virus‐free HSV/AAV hybrid vectors. Mol. Med. 3:813‐825.
   Fraefel, C., Breakefield, X.O., and Jacoby, D.R. 1998. HSV‐1 amplicon. In Gene Therapy for Neurological Disorders and Brain Tumors (E.A. Chiocca and X.O. Breakefield, eds.) pp. 63‐82. Humana Press, Totowa, N.J.
   Fraefel, C., Mendes‐Madeira, A., Mabon, O., Lefebvre, A., Le Meur, G., Ackermann, M., Moullier, P., and Rolling, F. 2005. In vivo gene transfer to the rat retina using herpes simplex virus type 1 (HSV‐1)‐based amplicon vectors. Gene Ther. 12:1283‐1288.
   Geller, A.I. and Breakefield, X.O. 1988. Defective HSV‐1 vector expresses Escherichia coli β‐galactosidase in cultured peripheral neurons. Science 241:1667‐1669.
   Geller, A.I., Keyomarski, K., Bryan, J., and Pardee, A.B. 1990. An efficient deletion mutant packaging system for defective HSV‐1 vectors: Potential applications to neuronal physiology and human gene therapy. Proc. Natl. Acad. Sci. U.S.A. 87:8950‐8954.
   Johnston, K.M., Jacoby, D., Pechan, P., Fraefel, C., Borghesani, P., Schuback, D., Dunn, R.J., Smith, F.I., and Breakefield, X.O. 1997. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum. Gene Ther. 8:359‐370.
   Kwong, A.D. and Frenkel, N. 1985. The herpes simplex virus amplicon. IV. Efficient expression of chimeric chicken ovalbumin gene amplified within defective virus genomes. Virology 142:421‐425.
   Lim, F., Hartley, D., Starr, P., Lang, P., Song, S., Yu, L., Wang, Y., and Geller, A.I. 1996. Generation of high‐titer defective HSV‐1 vectors using an IE2 deletion mutant and quantitative study of expression in cultured cortical cells. BioTechniques 20:458‐469.
   McGeoch, D.J., Dalrymple, M.A., Davison, A.J., Dolan, A., Frame, M.C., McNab, D., Perry, L.J., Scott, J.E., and Taylor, P. 1988. The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol. 69:1531‐1574.
   Pechan, P.A., Fotaki, M., Thompson, R.L., Dunn, R.J., Chase, M., Chiocca, E.A., and Breakefield, X.O. 1996. A novel “piggyback” packaging system for herpes simplex virus amplicon vectors. Hum. Gene Ther. 7:2003‐2013.
   Saeki, Y., Ichikawa, T., Saeki, A., Chiocca, E.A., Tobler, K., Ackermann, M., Breakefield, X.O., and Fraefel, C. 1998. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: Rescue of replication‐competent virus progeny and packaging of amplicon vectors. Hum. Gene Ther. 9:2787‐2794.
   Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X.O., and Chiocca, E.A. 2001. Improved helper virus‐free packaging system for HSV amplicon vectors using an ICP27‐deleted, oversized HSV‐1 DNA in a bacterial artificial chromosome. Mol. Ther. 3:591‐601.
   Sena‐Esteves, M., Saeki, Y., Camp, S.M., Chiocca, E.A., and Breakefield, X.O. 1999. Single‐step conversion of cells to retrovirus vector producers with herpes simplex virus‐Epstein‐Barr virus hybrid amplicons. J. Virol. 73:10426‐10439.
   Smith, I.L., Hardwicke, M.A., and Sandri‐Goldin, R.M. 1992. Evidence that the herpes simplex virus immediate‐early protein ICP27 acts post‐transcriptionally during infection to regulate gene expression. Virology 186:74‐86.
   Spaete, R.R. and Frenkel, N. 1982. The herpes simplex virus amplicon: A new eukaryotic defective‐virus cloning‐amplifying vector. Cell 30:295‐304.
   Stavropoulos, T.A. and Strathdee, C.A. 1998. An enhanced packaging system for helper‐dependent herpes simplex virus vectors. J. Virol. 72:7137‐7143.
   Wang, S. and Vos, J. 1996. A hybrid herpes virus infectious vector based on Epstein‐Barr virus and herpes simplex virus type 1 for gene transfer into human cells in vitro and in vivo. J. Virol. 70:8422‐8430.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library