Conditional Gene Expression and Targeting in Neuroscience Research

Alexei Morozov1

1 Unit on Behavioral Genetics, Laboratory of Molecular Pathophysiology, National Institute of Mental Health, Bethesda, Maryland
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 4.31
DOI:  10.1002/0471142301.ns0431s44
Online Posting Date:  July, 2008
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Recently developed techniques for spatially and temporally controlled genetic manipulations based on regulated homologous recombination and/or transcription are extensively used in brain research. In addition to being important for testing the role of specific proteins in the central nervous system, these techniques allow analysis of brain functions at the neuronal circuit level. This overview discusses principles of conditional inactivation and expression of genes, and their specific applications to studies of the mammalian brain. Curr. Protoc. Neurosci. 44:4.31.1‐4.31.10. © 2008 by John Wiley & Sons, Inc.

Keywords: brain; conditional mutagenesis; Cre‐loxP; tetracycline transactivator

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adamantidis, A.R., Zhang, F., Aravanis, A.M., Deisseroth, K., and de Lecea, L. 2007. Neural substrates of awakening probed with optogenetic control of hypocretin neurons. Nature 450:420‐424.
   Ahmed, B.Y., Chakravarthy, S., Eggers, R., Hermens, W.T., Zhang, J.Y., Niclou, S.P., Levelt, C., Sablitzky, F., Anderson, P.N., Lieberman, A.R., and Verhaagen, J. 2004. Efficient delivery of Cre‐recombinase to neurons in vivo and stable transduction of neurons using adeno‐associated and lentiviral vectors. BMC Neurosci. 5:4.
   Baron, U., Freundlieb, S., Gossen, M., and Bujard, H. 1995. Co‐regulation of two gene activities by tetracycline via a bidirectional promoter. Nucleic Acids Res. 23:3605‐3606.
   Belteki, G., Haigh, J., Kabacs, N., Haigh, K., Sison, K., Costantini, F., Whitsett, J., Quaggin, S.E., and Nagy, A. 2005. Conditional and inducible transgene expression in mice through the combinatorial use of Cre‐mediated recombination and tetracycline induction. Nucleic Acids Res. 33:e51.
   Berton, O., McClung, C.A., Dileone, R.J., Krishnan, V., Renthal, W., Russo, S.J., Graham, D., Tsankova, N.M., Bolanos, C.A., Rios, M., Monteggia, L.M., Self, D.W., and Nestler, E.J. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864‐868.
   Feil, R., Brocard, J., Mascrez, B., LeMeur, M., Metzger, D., and Chambon, P. 1996. Ligand‐activated site‐specific recombination in mice. Proc. Natl. Acad. Sci. U.S.A. 93:10887‐10890.
   Gaveriaux‐Ruff, C. and Kieffer, B.L. 2007. Conditional gene targeting in the mouse nervous system: Insights into brain function and diseases. Pharmacol. Ther. 113:619‐634.
   Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766‐1769.
   Gu, H., Marth, J.D., Orban, P.C., Mossmann, H., and Rajewsky, K. 1994. Deletion of a DNA polymerase beta gene segment in T cells using cell type‐specific gene targeting. Science 265:103‐106.
   Hunter, N.L., Awatramani, R.B., Farley, F.W., and Dymecki, S.M. 2005. Ligand‐activated Flpe for temporally regulated gene modifications. Genesis 41:99‐109.
   Lerchner, W., Xiao, C., Nashmi, R., Slimko, E.M., van Trigt, L., Lester, H.A., and Anderson, D.J. 2007. Reversible silencing of neuronal excitability in behaving mice by a genetically targeted, ivermectin‐gated Cl‐ channel. Neuron 54:35‐49.
   Lindeberg, J., Mattsson, R., and Ebendal, T. 2002. Timing the doxycycline yields different patterns of genomic recombination in brain neurons with a new inducible Cre transgene. J. Neurosci. Res. 68:248‐253.
   Livet, J., Weissman, T.A., Kang, H., Draft, R.W., Lu, J., Bennis, R.A., Sanes, J.R., and Lichtman, J.W. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56‐62.
   Luan, H. and White, B.H. 2007. Combinatorial methods for refined neuronal gene targeting. Curr. Opin. Neurobiol. 17:572‐580.
   Mansuy, I.M., Winder, D.G., Moallem, T.M., Osman, M., Mayford, M., Hawkins, R.D., and Kandel, E.R. 1998. Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21:257‐265.
   Mills, A.A. 2001. Changing colors in mice: An inducible system that delivers. Genes Dev. 15:1461‐1467.
   Nakazawa, K., Quirk, M.C., Chitwood, R.A., Watanabe, M., Yeckel, M.F., Sun, L.D., Kato, A., Carr, C.A., Johnston, D., Wilson, M.A., and Tonegawa, S. 2002. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211‐218.
   Reijmers, L.G., Perkins, B.L., Matsuo, N., and Mayford, M. 2007. Localization of a stable neural correlate of associative memory. Science 317:1230‐1233.
   Rodriguez, C.I., Buchholz, F., Galloway, J., Sequerra, R., Kasper, J., Ayala, R., Stewart, A.F., and Dymecki, S.M. 2000. High‐efficiency deleter mice show that FLPe is an alternative to Cre‐loxP. Nat. Genet. 25:139‐140.
   Shimizu, E., Tang, Y.P., Rampon, C., and Tsien, J.Z. 2000. NMDA receptor‐dependent synaptic reinforcement as a crucial process for memory consolidation. Science 290:1170‐1174.
   Slimko, E.M., McKinney, S., Anderson, D.J., Davidson, N., and Lester, H.A. 2002. Selective electrical silencing of mammalian neurons in vitro by the use of invertebrate ligand‐gated chloride channels. J. Neurosci. 22:7373‐7379.
   Utomo, A.R., Nikitin, A.Y., and Lee, W.H. 1999. Temporal, spatial, and cell type‐specific control of Cre‐mediated DNA recombination in transgenic mice. Nat. Biotechnol. 17:1091‐1096.
   Xu, B., Gottschalk, W., Chow, A., Wilson, R.I., Schnell, E., Zang, K., Wang, D., Nicoll, R.A., Lu, B., and Reichardt, L.F. 2000. The role of brain‐derived neurotrophic factor receptors in the mature hippocampus: Modulation of long‐term potentiation through a presynaptic mechanism involving TrkB. J. Neurosci. 20:6888‐6897.
   Yamamoto, M., Wada, N., Kitabatake, Y., Watanabe, D., Anzai, M., Yokoyama, M., Teranishi, Y., and Nakanishi, S. 2003. Reversible suppression of glutamatergic neurotransmission of cerebellar granule cells in vivo by genetically manipulated expression of tetanus neurotoxin light chain. J. Neurosci. 23:6759‐6767.
   Yu, C.R., Power, J., Barnea, G., O'Donnell, S., Brown, H.E., Osborne, J., Axel, R., and Gogos, J.A. 2004. Spontaneous neural activity is required for the establishment and maintenance of the olfactory sensory map. Neuron 42:553‐566.
   Zhang, F., Aravanis, A.M., Adamantidis, A., de Lecea, L., and Deisseroth, K. 2007. Circuit‐breakers: Optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8:577‐581.
   Zhuang, X., Masson, J., Gingrich, J.A., Rayport, S., and Hen, R. 2005. Targeted gene expression in dopamine and serotonin neurons of the mouse brain. J. Neurosci. Methods 143:27‐32.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library