Use of Adeno‐Associated and Herpes Simplex Viral Vectors for In Vivo Neuronal Expression in Mice

Rachel D. Penrod1, Audrey M. Wells1, William A. Carlezon1, Christopher W. Cowan1

1 McLean Hospital, Harvard Medical School, Belmont, Massachusetts
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 4.37
DOI:  10.1002/0471142301.ns0437s73
Online Posting Date:  October, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Adeno‐associated viruses and the herpes simplex virus are the two most widely used vectors for the in vivo expression of exogenous genes. Advances in the development of these vectors have enabled remarkable temporal and spatial control of gene expression. This unit provides methods for storing, delivering, and verifying expression of adeno‐associated and herpes simplex viruses in the adult mouse brain. It also describes important considerations for experiments using in vivo expression of these viral vectors, including serotype and promoter selection, as well as timing of expression. Additional protocols are provided that describe methods for preliminary experiments to determine the appropriate conditions for in vivo delivery. © 2015 by John Wiley & Sons, Inc.

Keywords: adeno‐associated virus; herpes simplex virus; in vivo; brain; mouse

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of Aliquots and Storage of Viral Vectors for Use In Vivo
  • Basic Protocol 2: Stereotaxic Surgery for Delivery of Virus to Mouse Brain
  • Basic Protocol 3: Validation of Virus Expression In Vivo Using IHC
  • Alternate Protocol 1: Validation of Virus Expression In Vivo Using Western Blotting Technique
  • Support Protocol 1: Determination of Appropriate Virus Infusion Volume and Time Course of Expression
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of Aliquots and Storage of Viral Vectors for Use In Vivo

  Materials
  • Prepared virus (AAV or HSV)
  • Wet ice
  • Tabletop microcentrifuge (low‐speed)
  • 0.65‐ to 0.7‐ml Low‐binding microcentrifuge tube (e.g., Corning Low‐Binding Plastic Microcentrifuge Tubes)
  • Ethanol‐resistant laboratory pen or marker
  • Aerosol‐resistant pipet tips
  • Pipetman and filter tips of appropriate volumes (0.2‐2 μl)
  • Tube racks (one standing rack for tube holding inside the hood and one floating rack for flash freezing)
  • Dry ice/ethanol tub for flash freezing (use a layer of dry ice covered by 100% ethanol to produce super‐cooled ethanol suitable for flash freezing aliquot tubes)
NOTE: Dividing into aliquots is conducted in a BSL‐2 hood dedicated to viral work to maintain a clean workspace and keep viral constructs separate from other experiments. AAVs are considered BSL‐1 by most safety committees, whereas HSVs are almost always considered BSL‐2. Safety risks can be further minimized by always wearing personal protective equipment when handling virus. This includes gloves, laboratory coat, hair covering, shoe covering, protective eyewear, and a mask. Consult your institution's requirements for working with these viruses and follow any recommendations.

Basic Protocol 2: Stereotaxic Surgery for Delivery of Virus to Mouse Brain

  Materials
  • 1.7‐ml microcentrifuge tubes each filled with distilled water, 10% (w/v) bleach, and 70% (w/v) ethanol
  • 8‐ to 12‐week old C57/Bl6 mice
  • Anesthetic: ketamine (120 mg/kg body weight)/xylazine (16 mg/kg body weight) in 0.9% (w/v) NaCl, sterile filtered and stored at room temperature [prepare dilution to be injected at a volume of 0.1 ml/10 g body weight, intraperitoneal (i.p.)]
  • 0.025‐0.05 mg/kg Atropine
  • 70% ethanol swabs
  • Betadine solution
  • Ophthalmic ointment, sterile
  • 2% Lidocaine‐HCl
  • Vetbond or other approved adhesive, optional
  • Virus aliquots: stored at −20˚C until use (see protocol 1)
  • Triple antibiotic ointment
  • Sterile injectable saline, prewarmed to 37˚C
  • Stereotaxic frame outfitted with mouse nosepiece and ear bars or cups
  • Universal arm holder (available for purchase with stereotaxic frame)
  • 30‐ to 33‐G small hub removable needle, 1.5‐in. length
  • 5‐μl, Model 85 Hamilton Microliter Syringe with reinforced plunger
  • 1‐ml syringes with 26‐ or 30‐G needles for drug administration
  • Holding cages with paper towel lining
  • Small animal clipper
  • Sharp scissors, ear punch, toe‐clip, or other equipment for animal identification
  • Sterilized surgical instruments including:
    • Scalpel
    • Forceps, blunt and fine
    • Small bulldog clips
  • Sterile cotton swabs
  • Animal surgical tracking forms: each form should include demographic information about the mouse (weight, identifier), coordinates (for both confirming orientation and final infusion coordinates), volume of virus injected, and post‐op notes
  • Wax pencil (Fisher, cat. no. S45652B) or ethanol‐reistant lab marker (Fisher, cat. no. 22‐026‐700)
  • Dremel drill with 0.9‐mm bit
  • 26‐G needles
  • Sterile gauze
  • Dissolvable sutures or no. 7 wound clips and holder
  • Heating pad
  • Clean housing cage with fresh bedding
  • Cleaning wire: 0.00350 in. O.D. to clean 31‐G needles, optional
  • Hot bead sterilizer
NOTE: The Drug Enforcement Agency (DEA) has classified ketamine as a Schedule III drug per the Controlled Substances Act. Use of this agent requires registration with the DEA, licensing by your state board of pharmacy, and possible additional requirements as dictated by your institution prior to ordering and use. Please note that ketamine can cause rapid and persistent behavioral (antidepressant‐like) effects in rodents that may complicate the experimental design and data interpretation.NOTE: When targeting some brain regions (e.g., prefrontal cortex), metal needles can produce significant tissue damage. For delicate or small regions, consider using glass pipettes. When using glass pipettes, it is important to slow the infusion rate considering that a constant rate through an injector with a smaller bore results in elevated hydraulic pressure at the injection site.NOTE: Prior to infusions, coordinates and infusion volume should be verified. See Supporting Protocol 1 for pilot experiments.

Basic Protocol 3: Validation of Virus Expression In Vivo Using IHC

  Materials
  • Fixed brains: prepared either by 3% PFA perfusion or drop‐fixation, cryopreserved and sliced into 30 to 50‐μm sections (stored in 1×PBS/0.01% sodium azide)
  • Phosphate‐buffered saline (PBS; see recipe), 1×
  • IHC blocking solution (see recipe)
  • Primary antibody diluted to appropriate concentration in blocking solution (see recipe for Blocking solutions)
  • Secondary antibody solution diluted to appropriate concentration in blocking solution (see recipe for Blocking solutions)
  • Counterstaining solution (DAPI or Hoechst)
  • 70%, 95%, and 100% (w/v) ethanol solutions (prepared in ultra‐pure water)
  • Citrisolv (Fisher, cat. no. 22‐143‐975)
  • DPX mounting medium
  • Glass “hook”: flame‐polished glass pipet, fashioned into a “hook” end
  • 35‐mm petri dish
  • 24‐well plates
  • Rotary shaker or rotating platform
  • SuperFrost+ Slides (Fisher, cat. no. 12‐550‐15)
  • Pencil
  • Fine‐bristled trimmed paintbrush
  • Kimwipes
  • Slide containers
  • Slide racks
  • Paper towels
  • Plastic transfer pipets
  • Microscope cover glass (coverslips) (Fisher, cat. no. 12‐545‐M)
  • Covered container (for storing the slides)
  • Appropriately outfitted microscope for imaging
  • Placement tracking sheet with images of coronal sections of the brain region of interest for tracking targeting
NOTE: We find that drop‐fixing mouse brains in fresh 3% PFA overnight is sufficient to preserve antibody detectable EGFP signals in AAV‐transduced nucleus accumbens. Fixation conditions should be optimized for specific antibodies and viruses to ensure maximal detection sensitivity.NOTE: If reclaiming antibody solutions, include 0.02% (w/v) sodium azide to prevent bacterial growth.

Alternate Protocol 1: Validation of Virus Expression In Vivo Using Western Blotting Technique

  Materials
  • Wet ice
  • Dry ice
  • Mice with virally transduced brain region
  • Phosphate‐buffered saline (PBS; see recipe), 1×
  • Sucrose lysis buffer (see recipe)
  • Protease, kinase, and phosphatase inhibitors as needed
  • Sample product: Mini Protease Inhibitor Tablets (Roche)
  • NaF (50 mM), Okadaic Acid (0.5‐50 nM), Sodium Orthovanadate (1 mM), pMSF (1 mM)
  • MilliQ or other ultra pure water
  • 70% (w/v) ethanol
  • Sample application buffer (4× SAB; see recipe)
  • Reducing agent, e.g., 2‐mercaptoethanol (2‐ME) or dithiothreitol (DTT)
  • BCA or other protein assay kit (sample product; Fisher, cat. no. PI23227)
  • LiCor blocking buffer (LiCor, cat. no. 927‐40000)
  • 1× TBS‐T
  • 10% (w/v) Tween‐20
  • 10% (w/v) SDS
  • Large, rectangular ice bucket
  • Aluminum foil
  • 1.7‐ml microcentrifuge tubes (labeled)
  • Large weigh boats or 35‐mm petri dishes
  • Dissection equipment including:
    • Blunt forceps
    • Fine forceps
    • Small scissors
    • Rongeurs
    • Punches
    • Razor blades
    • Flat spatula
    • Tissue punch
    • Brain matrix (1‐mm or 0.5‐mm matrices are available in both sagittal and coronal orientations; e.g., Alto 1‐mm mouse coronal matrix; Roboz)
  • 1‐ml syringes
  • Guillotine or approved sharp decapitation scissors
  • 26‐G needles
  • Sonicator (wand‐style, e.g., Cole‐Parmer Ultrasonic Processor)
  • Water bath, heat block, or other unit capable of boiling tubes
  • Benchtop centrifuge
  • SDS‐PAGE electrophoresis system
  • Immunoblotting transfer system
  • Nitrocellulose membrane
  • LiCor Odyssey Infrared Imaging System
  • Optional for dissection:
    • Additional light sources
    • Dissecting microscope
NOTE: All protocols using live animals should be reviewed and approved by an Institutional Animal Care and Use Committee (IACUC). Trained personnel, following procedures approved by IACUC and other institutional regulations pertaining to animal welfare, should conduct all dissections.NOTE: Tissue punches can be purchased (e.g., NIH style neuropunch, Fine Science Tools) or constructed by removing the beveled edge of different gauged needles using a small dremel saw.

Support Protocol 1: Determination of Appropriate Virus Infusion Volume and Time Course of Expression

  Materials
  • High‐titer viral vector divided into aliquots (see protocol 1)
  • Stereotaxic equipment and animals (see protocol 2)
  • Materials for IHC validation of virus expression (see protocol 3)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Aschauer, D.F., Kreuz, S., and Rumpel, S. 2013. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8:e76310. doi: 10.1371/journal.pone.0076310.
  Atasoy, D., Aponte, Y., Su, H.H., and Sternson, S.M. 2008. A FLEX switch targets Channelrhodopsin‐2 to multiple cell types for imaging and long‐range circuit mapping. J. Neurosci. 28:7025‐7030. doi: 10.1523/JNEUROSCI.1954‐08.2008.
  Berns, K.I. and Giraud, C. 1996. Biology of adeno‐associated virus. Curr. Top. Microbiol. Immunol. 218:1‐23.
  Cai, D., Cohen, K.B., Luo, T., Lichtman, J.W., and Sanes, J.R. 2013. Improved tools for the Brainbow toolbox. Nat. Methods 10:540‐547. doi: 10.1038/nmeth.2450.
  Carlezon, W.A. Jr., Boundy, V.A., Haile, C.N., Lane, S.B., Kalb, R.G., Neve, R.L., and Nestler, E.J. 1997. Sensitization to morphine induced by viral‐mediated gene transfer. Science 277:812‐814.
  Carlezon, W.A. Jr., Haile, C.N., Coppersmith, R., Hayashi, Y., Malinow, R., Neve, R.L., and Nestler, E.J. 2000. Distinct sites of opiate reward and aversion within the midbrain identified using a herpes simplex virus vector expressing GluR1. J. Neurosci. 20:RC62.
  Carlezon, W.A. Jr., Thome, J., Olson, V.G., Lane‐Ladd, S.B., Brodkin, E.S., Hiroi, N., Duman, R.S., Neve, R.L., and Nestler, E.J. 1998. Regulation of cocaine reward by CREB. Science 282:2272‐2275.
  Castle, M.J., Gershenson, Z.T., Giles, A.R., Holzbaur, E.L.F., and Wolfe, J.H. 2014. Adeno‐associated virus serotypes 1, 8, and 9 share conserved mechanisms for anterograde and retrograde axonal transport. Hum. Gene Ther. 25:705‐720.
  Cearley, C.N. and Wolfe, J. 2006. Transduction characteristics of adeno‐associated virus vectors expressing cap serotypes 7, 8, 9, and Rh10 in the mouse brain. Mol. Ther. 13:528‐537.
  Cearley, C.N., Vandenberghe, L.H., Parente, M.K., Carnish, E.R., Wilson, J.M., and Wolfe, J.H. 2008. Expanded repertoire of AAV vector serotypes mediate unique patterns of transduction in mouse brain. Mol. Ther. 16:1710‐1718.
  Cho, J‐H., Deisseroth, K., and Bolshakov, V.Y. 2013. Synaptic encoding of fear extinction in mPFC‐amygdala circuits. Neuron 80:1491‐1507.
  Choi, J.‐H., Yu, N.‐K., Baek, G.‐C., Bakes, J., Seo, D., Nam, H.J., Baek, S.H., Lim, C.‐S., Lee, Y.‐S., and Kaang, B.‐K. 2014. Optimization of AAV expression cassettes to improve packaging capacity and transgene expression in neurons. Molecular Brain 7:17.
  Christoffel, D.J., Golden, S.A., Dumitriu, D., Robison, A.J., Janssen, W.G., Ahn, H.F., Krishnan, V., Reyes, C.M., Han, M.‐H., Ables, J.L., Eisch, A.J., Dietz, D.M., Ferguson, D., Neve, R.L., Greengard, P., Kim, Y., Morrison, J.H., and Russo, S.J. 2011. IκB kinase regulates social defeat stress‐induced synaptic and behavioral plasticity. J. Neurosci. 31:314‐321.
  Costantini, L.C., Jacoby, D.R., Wang, S., Fraefel, C., Breakefield, X.O., and Isacson, O. 1999. Gene transfer to the nigrostriatal system by hybrid herpes simplex virus/adeno‐associated virus amplicon vectors. Hum. Gene Ther. 10:2481‐2494.
  Covington, H.E., Lobo, M.K., Maze, I., Vialou, V., Hyman, J.M., Zaman, S., LaPlant, Q., Mouzon, E., Ghose, S., Tamminga, C.A., Neve, R.L., Deisseroth, K., and Nestler, E.J. 2010. Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J. Neurosci. 30:16082‐16090.
  Crock, L.W., Kolber, B.J., Morgan, C.D., Sadler, K.E., Vogt, S.K., Bruchas, M.R., and Gereau, R.W. 2012. Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain. J. Neurosci. 32:14217‐14226.
  Cuchet, D., Potel, C., Thomas, J., and Epstein, A.L. 2007. HSV‐1 amplicon vectors. Expert Opin. Biol. Ther. 7:975‐995.
  Davidson, B.L., Stein, C.S., Heth, J.A., Martins, I., Kotin, R.M., Derksen, T.A., Zabner, J., Ghodsi, A., and Chiorini, J.A. 2000. Recombinant adeno‐associated virus type 2, 4, and 5 vectors: Transduction of variant cell types and regions in the mammalian central nervous system. Proc. Natl. Acad. Sci. U.S.A. 97:3428‐3432.
  Dong, J.Y., Fan, P.D., and Frizzell, R.A. 1996. Quantitative analysis of the packaging capacity of recombinant adeno‐associated virus. Hum. Gene Ther. 7:2101‐2112.
  Fagoe, N.D., Eggers, R., Verhaagen, J., and Mason, M.R.J. 2014. A compact dual promoter adeno‐associated viral vector for efficient delivery of two genes to dorsal root ganglion neurons. Gene Ther. 21:242‐252.
  Fenno, L.E., Mattis, J., Ramakrishnan, C., Hyun, M., Lee, S.Y., He, M., Tucciarone, J., Selimbeyoglu, A., Berndt, A., Grosenick, L., Zalocusky, K.A., Bernstein, H., Perry, C., Diester, I., Boyce, F.M., Bass, C.E., Neve, R., Huang, Z.J., and Deisseroth, K. 2014. Targeting cells with single vectors using multiple‐feature Boolean logic. Nat. Methods 11:763‐772.
  Ferguson, S.M., Eskenazi, D., Ishikawa, M., Wanat, M.J., Phillips, P.E.M., Dong, Y., Roth, B.L., and Neumaier, J.F. 2011. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Publ. Group 14:22‐24.
  Fink, D.J., DeLuca, N.A., Goins, W.F., and Glorioso, J.C. 1996. Gene transfer to neurons using herpes simplex virus‐based vectors. Annu. Rev. Neurosci. 19:265‐287.
  Flotte, T.R., Afione, S.A., and Zeitlin, P.L. 1994. Adeno‐associated virus vector gene expression occurs in nondividing cells in the absence of vector DNA integration. Am. J. Respir. Cell Mol. Biol. 11:517‐521.
  Fraefel, C., Song, S., Lim, F., Lang, P., Yu, L., Wang, Y., Wild, P., and Geller, A.I. 1996. Helper virus‐free transfer of herpes simplex virus type 1 plasmid vectors into neural cells. J. Virol. 70:7190‐7197.
  Frenkel, N. 2006. The history of the hsv amplicon: From naturally occurring defective genomes to engineered amplicon vectors. Curr. Gene Ther. 6:277‐299.
  Gallagher, S., Winston, S.E., Fuller, S.A., and Hurrell, J.G.R. 2011. Immunoblotting and Immunodetection. Curr. Protoc. Cell Biol. 52:6.2.1‐6.2.28.
  Ghosh, A., Yue, Y., and Duan, D. 2011. Efficient transgene reconstitution with hybrid dual AAV vectors carrying the minimized bridging sequences. Hum. Gene Ther. 22:77‐83.
  Goins, W.F., Wolfe, D., Krisky, D.M., Bai, Q., Burton, E.A., Fink, D.J., and Glorioso, J.C. 2004. Delivery using herpes simplex virus: An overview. Methods Mol. Biol. 246:257‐299.
  Gradinaru, V., Zhang, F., Ramakrishnan, C., Mattis, J., Prakash, R., Diester, I., Goshen, I., Thompson, K.R., and Deisseroth, K. 2010. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141:154‐165.
  Gräff, J., Joseph, N.F., Horn, M.E., Samiei, A., Meng, J., Seo, J., Rei, D., Bero, A.W., Phan, T.X., Wagner, F., Holson, E., Xu, J., Sun, J., Neve, R.L., Mach, R.H., Haggarty, S.J., and Tsai, L‐H. 2014. Epigenetic priming of memory updating during reconsolidation to attenuate remote fear memories. Cell 156:261‐276.
  Han, J.H., Yiu, A.P., Cole, C.J., Hsiang, H.L., Neve, R.L., and Josselyn, S.A. 2008. Increasing CREB in the auditory thalamus enhances memory and generalization of auditory conditioned fear. Learn. Mem. 15:443‐453.
  Han, J.H., Kushner, S.A., Yiu, A.P., Cole, C.J., Matynia, A., Brown, R.A., Neve, R.L., Guzowski, J.F., Silva, A.J., and Josselyn, S.A. 2007. Neuronal competition and selection during memory formation. Science 316:457‐460.
  Hofman F.M. and Taylor, C.R. 2013. Immunohistochemistry. Curr. Protoc. Immunol. 103:21.4.1‐21.4.26.
  Hong, C.‐S., Goins, W.F., Goss, J.R., Burton, E.A., and Glorioso, J.C. 2006. Herpes simplex virus RNAi and neprilysin gene transfer vectors reduce accumulation of Alzheimer's disease‐related amyloid‐β peptide in vivo. Gene Ther. 13:1068‐1079.
  Hooks, B.M., Mao, T., Gutinsky, D.A., Yamawaki, N., Svoboda, K., and Shepherd, G.M. 2013. Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. J. Neurosci. 33:748‐760.
  Horsburgh, B.C., Hubinette, M.M., Qiang, D., MacDonald, M.L., and Tufaro, F. 1999. Allele replacement: An application that permits rapid manipulation of herpes simplex virus type 1 genomes. Gene Ther. 6:922‐930.
  Husain, T., Passini, M.A., Parente, M.K., Fraser, N.W., and Wolfe, J.H. 2009. Long‐term AAV vector gene and protein expression in mouse brain from a small pan‐cellular promoter is similar to neural cell promoters. Gene Ther. 16:927‐932.
  Jennings, J.H., Sparta, D.R., Stamatakis, A.M., Ung, R.L., Pleil, K.E., Kash, T.L., and Stuber, G.D. 2013. Distinct extended amygdala circuits for divergent motivational states. Nature 496:224‐228.
  Jerusalinsky, D. and Epstein, A. 2006. Amplicon vectors as outstanding tools to study and modify cognitive functions. Curr. Gene. Ther. 6:351‐360.
  Jerusalinsky, D., Baez, M.V., and Epstein, A.L. 2012. Herpes simplex virus type 1‐based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases. J. Physiol. 106:2‐11.
  Jin, B.K., Belloni, M., Conti, B., Federoff, H.J., Starr, R., Son, J.H., Baker, H., and Joh, T.H. 1996. Prolonged in vivo gene expression driven by a tyrosine hydroxylase promoter in a defective herpes simplex virus amplicon vector. Hum. Gene Ther. 7:2015‐2024.
  Johnston, K.M., Jacoby, D., Pechan, P.A., Fraefel, C., Borghesani, P., Schuback, D., Dunn, R.J., Smith, F.I., and Breakefield, X.O. 1997. HSV/AAV hybrid amplicon vectors extend transgene expression in human glioma cells. Hum. Gene Ther. 8:359‐370.
  Kaplitt, M.G., Leone, P., Samulski, R.J., Xiao, X., Pfaff, D.W., O'Malley, K.L., and During, M.J. 1994. Long‐term gene expression and phenotypic correction using adeno‐associated virus vectors in the mammalian brain. Nat. Genet. 8:148‐154.
  Kelz, M.B., Chen, J., Carlezon, W.A., Whisler, K., Gilden, L., Beckmann, A.M., Steffen, C., Zhang, Y.J., Marotti, L., Self, D.W., Tkatch, T., Baranauskas, G., Surmeier, D.J., Neve, R.L., Duman, R.S., Picciotto, M.R., and Nestler, E.J. 1999. Expression of the transcription factor deltaFosB in the brain controls sensitivity to cocaine. Nature 401:272‐276.
  Krisky, D.M., Wolfe, D., Goins, W.F., Marconi, P.C., Ramakrishnan, R., Mata, M., Rouse, R.J., Fink, D.J., and Glorioso, J.C. 1998. Deletion of multiple immediate‐early genes from herpes simplex virus reduces cytotoxicity and permits long‐term gene expression in neurons. Gene Ther. 5:1593‐1603.
  Kügler, S., Lingor, P., Schöll, U., Zolotukhin, S., and Bähr, M. 2003. Differential transgene expression in brain cells in vivo and in vitro from AAV‐2 vectors with small transcriptional control units. Virology 311:89‐95.
  Kupferschmidt, D.A., Cody, P.A., Lovinger, D.M., and Davis, M.I. 2015. Brain BLAQ: Post‐hoc thick‐section histochemistry for localizing optogenetic constructs in neurons and their distal terminals. Front. Neuroanat. 9:6.
  Le Guiner, C., Stieger, K., Toromanoff, A., Guilbaud, M., Mendes‐Madeira, A., Devaux, M., Guigand, L., Cherel, Y., Moullier, P., Rolling, F., and Adjali, O. 2014. Transgene regulation using the tetracycline‐inducible TetR‐KRAB system after AAV‐mediated gene transfer in rodents and nonhuman primates. PLoS One 9:e102538.
  Lim, F. 2013. HSV‐1 as a Model for emerging gene delivery vehicles. ISRN Virology 2013;Article ID 397243, 12 pages. doi: 10.5402/2013/397243.
  Lim, F., Hartley, D., Starr, P., Lang, P., Song, S., Yu, L., Wang, Y., and Geller, A.I. 1996. Generation of high‐titer defective HSV‐1 vectors using an IE 2 deletion mutant and quantitative study of expression in cultured cortical cells. BioTechniques 20:460‐469.
  Liu, B., Wang, S., Brenner, M., Paton, J.F.R., and Kasparov, S. 2008. Enhancement of cell‐specific transgene expression from a Tet‐Off regulatory system using a transcriptional amplification strategy in the rat brain. J. Gene Med. 10:583‐592.
  Logvinoff, C. and Epstein, A.L. 2000. Genetic engineering of herpes simplex virus and vector genomes carrying loxP sites in cells expressing Cre recombinase. Virology 267:102‐110.
  Loweth, J.A., Li, D., Cortright, J.J., Wilke, G., Jeyifous, O., Neve, R.L., Bayer, K.U., and Vezina, P. 2013. Persistent reversal of enhanced amphetamine intake by transient CaMKII inhibition. J. Neurosci. 33:1411‐1416.
  Marconi, P., Fraefel, C., and Epstein, A.L. 2015. Herpes simplex virus type 1 (HSV‐1)‐derived recombinant vectors for gene transfer and gene therapy. Methods Mol. Biol. 1254:269‐293.
  Mata, M., Glorioso, J.C., and Fink, D.J. 2002. Targeted gene delivery to the nervous system using herpes simplex virus vectors. Physiol. Behav. 77:483‐488.
  McCown, T.J., Xiao, X., Li, J., Breese, G.R., and Jude Samulski, R. 1996. Differential and persistent expression patterns of CNS gene transfer by an adeno‐associated virus (AAV) vector. Brain Res. 713:99‐107.
  Michaelides, M., Anderson, S.A.R., Ananth, M., Smirnov, D., Thanos, P.K., Neumaier, J.F., Wang, G.‐J., Volkow, N.D., and Hurd, Y.L. 2013. Whole‐brain circuit dissection in free‐moving animals reveals cell‐specific mesocorticolimbic networks. J. Clin. Invest. 123:5342‐5350.
  Muschamp, J.W. and Carlezon, W.A. 2013. Roles of Nucleus Accumbens CREB and Dynorphin in Dysregulation of Motivation. Cold Spring Harb. Perspect. Med. 3:a012005‐a012005.
  Muzumdar, M.D., Tasic, B., Miyamichi, K., Li, L., and Luo, L. 2007. A global double‐fluorescent Cre reporter mouse. Genesis 45:593‐605.
  Neve, R.L. and Lim, F. 2013. Generation of high‐titer defective HSV‐1 vectors. Curr. Protoc. Neurosci. 62:4.13.1‐4.13.15.
  Neve, R.L., Neve, K.A., Nestler, E.J., and Carlezon, W.A. 2005. Use of herpes virus amplicon vectors to study brain disorders. BioTechniques 39:381‐391.
  Norgren, R.B. and Lehman, M.N. 1998. Herpes simplex virus as a transneuronal tracer. Neurosci. Biobehav. Rev. 22:695‐708.
  Palfi, A., Chadderton, N., McKee, A.G., Blanco Fernandez, A., Humphries, P., Kenna, P.F., and Farrar, G.J. 2012. Efficacy of codelivery of dual AAV2/5 vectors in the murine retina and hippocampus. Hum. Gene Ther. 23:847‐858.
  Pascoli, V., Turiault, M., and Luscher, C. 2012. Reversal of cocaine‐evoked synaptic potentiation resets drug‐induced adaptive behavior. Nature 481:71‐75.
  Pliakas, A.M., Carlson, R.R., Neve, R.L., Konradi, C., Nestler, E.J., and Carlezon, W.A. Jr. 2001. Altered responsiveness to cocaine and increased immobility in the forced swim test associated with elevated cAMP response element‐binding protein expression in nucleus accumbens. J. Neurosci. 21:7397‐7403.
  Podsakoff, G., Wong, K.K., and Chatterjee, S. 1994. Efficient gene transfer into nondividing cells by adeno‐associated virus‐based vectors. J. Virol. 68:5656‐5666.
  Pulipparacharuvil, S., Renthal, W., Hale, C.F., Taniguchi, M., Xiao, G., Kumar, A., Russo, S.J., Sikder, D., Dewey, C.M., Davis, M.M., Greengard, P., Nairn, A.C., Nestler, E.J., and Cowan, C.W. 2008. Cocaine regulates MEF2 to control synaptic and behavioral plasticity. Neuron 59:621‐633.
  Rabinowitz, J.E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., and Samulski, R.J. 2002. Cross‐packaging of a single adeno‐associated virus (AAV) Type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J. Virol. 76:791‐801.
  Rothermel, M., Brunert, D., Zabawa, C., Diaz‐Quesada, M., and Wachowiak, M. 2013. Transgene expression in target‐defined neuron populations mediated by retrograde infection with adeno‐associated viral vectors. J. Neurosci. 33:15195‐15206.
  Rumpel, S., LeDoux, J., Zador, A., and Malinow, R. 2005. Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83‐88.
  Saeki, Y., Fraefel, C., Ichikawa, T., Breakefield, X.O., and Chiocca, E.A. 2001. Improved helper virus‐free packaging system for HSV amplicon vectors using an ICP27‐deleted, oversized HSV‐1 DNA in a bacterial artificial chromosome. Mol. Ther. 3:591‐601.
  Saeki, Y., Ichikawa, T., Saeki, A., Chiocca, E.A., Tobler, K., Ackermann, M., Breakefield, X.O., and Fraefel, C. 1998. Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: Rescue of replication‐competent virus progeny and packaging of amplicon vectors. Hum. Gene Ther. 9:2787‐2794.
  Salegio, E.A., Samaranch, L., Kells, A.P., Mittermeyer, G., San Sebastian, W., Zhou, S., Beyer, J., Forsayeth, J., and Bankiewicz, K.S. 2013. Axonal transport of adeno‐associated viral vectors is serotype‐dependent. Gene Ther. 20:348‐352.
  Schnepp, B.C., Clark, K.R., Klemanski, D.L., Pacak, C.A., and Johnson, P.R. 2003. Genetic fate of recombinant adeno‐associated virus vector genomes in muscle. J. Virol. 77:3495‐3504.
  Scobie, K.N., Damez‐Werno, D., Sun, H., Shao, N., Gancarz, A., Panganiban, C.H., Dias, C., Koo, J., Caiafa, P., Kaufman, L., Neve, R.L., Dietz, D.M., Shen, L., and Nestler, E.J. 2014. Essential role of poly(ADP‐ribosyl)ation in cocaine action. Proc. Natl. Acad. Sci. U.S.A. 111:2005‐2010.
  Senn, V., Wolff, S.B.E., Herry, C., Grenier, F., Ehrlich, I., Gründemann, J., Fadok, J.P., Müller, C., Letzkus, J.J., and Lüthi, A. 2014. Long‐range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428‐437.
  Simonato, M., Manservigi, R., Marconi, P., and Glorioso, J. 2000. Gene transfer into neurones for the molecular analysis of behaviour: Focus on herpes simplex vectors. Trends Neurosci. 23:183‐190.
  Smith, L.N., Jedynak, J.P., Fontenot, M.R., Hale, C.F., Dietz, K.C., Taniguchi, M., Thomas, F.S., Zirlin, B.C., Birnbaum, S.G., Huber, K.M., and Cowan, C.W. 2014. Fragile X mental retardation protein regulates synaptic and behavioral plasticity to repeated cocaine administration. Neuron 82:645‐658.
  Spaete, R.R. and Frenkel, N. 1982. The herpes simplex virus amplicon: A new eukaryotic defective‐virus cloning‐amplifying vector. Cell 30:295‐304.
  Spaete, R.R. and Frenkel, N. 1985. The herpes simplex virus amplicon: Analyses of cis‐acting replication functions. Proc. Natl. Acad. Sci. U.S.A. 82:694‐698.
  Stamatakis, A.M. and Stuber, G.D. 2012. Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance. Nat. Neurosci. 15:1105‐1107.
  Stamatakis, A.M., Jennings, J.H., Ung, R.L., Blair, G.A., Weinberg, R.J., Neve, R.L., Boyce, F., Mattis, J., Ramakrishnan, C., Deisseroth, K., and Stuber, G.D. 2013. A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron 80:1039‐1053.
  Stavropoulos, T.A. and Strathdee, C.A. 1998. An enhanced packaging system for helper‐dependent herpes simplex virus vectors. J. Virol. 72:7137‐7143.
  Swiech, L., Heidenreich, M., Banerjee, A., Habib, N., Li, Y., Trombetta, J., Sur, M., and Zhang, F. 2015. In vivo interrogation of gene function in the mammalian brain using CRISPR‐Cas9. Nat. Biotechnol. 33:102‐106.
  Taymans, J.‐M., Vandenberghe, L.H., Haute, C.V.D., Thiry, I., Deroose, C.M., Mortelmans, L., Wilson, J.M., Debyser, Z., and Baekelandt, V. 2007. Comparative analysis of adeno‐associated viral vector serotypes 1, 2, 5, 7, and 8 in mouse brain. Hum. Gene Ther. 18:195‐206.
  Todtenkopf, M.S., Parsegian, A., Naydenov, A., Neve, R.L., Conradi, C., and Carlezon, W.A. Jr. 2006. Brain reward regulated by AMPA receptor subunits in nucleus accumbens shell. J. Neurosci. 6:11665‐11669.
  Vetere, G., Restivo, L., Cole, C.J., Ross, P.J., Ammassari‐Teule, M., Josselyn, S.A., and Frankland, P.W. 2011. Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual fear memory. PNAS. 108:8456‐8460.
  Wang, C., Wang, C.‐M., Clark, K.R., and Sferra, T.J. 2003. Recombinant AAV serotype 1 transduction efficiency and tropism in the murine brain. Gene Ther. 10:1528‐1534.
  Wang, Q., Henry, A.M., Harris, J.A., Oh, S.W., Joines, K.M., Nyhus, J., Hirokawa, K.E., Dee, N., Mortrud, M., and Parry, S. 2014. Systematic comparison of adeno‐associated virus and biotinylated dextran amine reveals equivalent sensitivity between tracers and novel projection targets in the mouse brain ‐ Wang ‐ 2014 ‐ Journal of Comparative Neurology ‐ Wiley Online Library. J. Comp. Neurol. 522:1989‐2012. Available at: http://www‐ncbi‐nlm‐nih‐gov.ezp‐prod1.hul.harvard.edu/pubmed/24639291.
  Watakabe, A., Ohtsuka, M., Kinoshita, M., Takaji, M., Isa, K., Mizukami, H., Ozawa, K., Isa, T., and Yamamori, T. 2014a. Comparative analyses of adeno‐associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci. Res. 93:144‐157.
  Watakabe, A., Takaji, M., Kato, S., Kobayashi, K., Mizukami, H., Ozawa, K., Ohsawa, S., Matsui, R., Watanabe, D., and Yamamori, T. 2014b. Simultaneous visualization of extrinsic and intrinsic axon collaterals in Golgi‐like detail for mouse corticothalamic and corticocortical cells: A double viral infection method. Front. Neural Circuits 8:110. doi: 10.3389/fncir.2014.00110.
  Wouterlood, F.G., Bloem, B., Mansvelder, H.D., Luchicchi, A., and Deisseroth, K. 2014. A fourth generation of neuroanatomical tracing techniques: Exploiting the offspring of genetic engineering. J. Neurosci. Methods 235:331‐348.
  Wu, N., Watkins, S.C., Schaffer, P.A., and DeLuca, N.A. 1996. Prolonged gene expression and cell survival after infection by a herpes simplex virus mutant defective in the immediate‐early genes encoding ICP4, ICP27, and ICP22. J. Virol. 70:6358‐6369.
  Xiao, X., Li, J., McCown, T.J., and Samulski, R.J. 1997. Gene transfer by adeno‐associated virus vectors into the central nervous system. Exp. Neurol. 144:113‐124.
  Xu, J., Ma, C., Bass, C., and Terwilliger, E.F. 2005. A combination of mutations enhances the neurotropism of AAV‐2. Virology 341:203‐214.
  Yang, A.R.S.T., Liu, J., Yi, H.S., Warnock, K.T., Wang, M., June, H.L., Puche, A.C., Elnabawi, A., Sieghart, W., Aurelian, L., and June, H.L. 2011. Binge drinking: In search of its molecular target via the GABA(A) receptor. Front. Neurosci. 5:123.
  Yizhar, O., Fenno, L.E., Davidson, T.J., Mogri, M., and Deisseroth, K. 2011. Optogenetics in neural systems. Neuron 71:9‐34.
  Yonehara, K., Farrow, K., Ghanem, A., Hillier, D., Balint, K., Teixeira, M., Jüttner, J., Noda, M., Neve, R.L., Conzelmann, K.‐K., and Roska, B. 2013. The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79:1078‐1085.
  Zaupa, C., Revol‐Guyot, V., and Epstein, A.L. 2003. Improved packaging system for generation of high‐level noncytotoxic HSV‐1 amplicon vectors using cre‐loxp site‐specific recombination to delete the packaging signals of defective helper genomes. Hum. Gene Ther. 14:1049‐1063.
  Zhang, G.‐R., Zhao, H., Abdul‐Muneer, P.M., Cao, H., Li, X., and Geller, A.I. 2015. Neurons can be labeled with unique hues by helper virus‐free HSV‐1 vectors expressing Brainbow. J. Neurosci. Methods 240:77‐88.
  Zhu, P., Narita, Y., Bundschuh, S.T., Fajardo, O., Schärer, Y.‐P.Z., Chattopadhyaya, B., Bouldoires, E.A., Stepien, A.E., Deisseroth, K., Arber, S., Sprengel, R., Rijli, F.M., and Friedrich, R.W. 2009. Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the tet system. Front. Neural Circuits 3:21.
  Zou, M., De Koninck, P., Neve, R.L., and Friedrich, R.W. 2014. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV‐1) and electroporation: Methods and optogenetic applications. Front. Neural Circuits 8:41.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library