The Use of Phage Display in Neurobiology

Andrew R.M. Bradbury1

1 Los Alamos National Laboratory, Los Alamos, New Mexico
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 5.12
DOI:  10.1002/0471142301.ns0512s51
Online Posting Date:  April, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Phage display has been extensively used to study protein‐protein interactions, receptor‐ and antibody‐binding sites, and immune responses, to modify protein properties, and to select antibodies against a wide range of different antigens. In the format most often used, a polypeptide is displayed on the surface of a filamentous phage by genetic fusion to one of the coat proteins, creating a chimeric coat protein, and coupling phenotype (the protein) to genotype (the gene within). As the gene encoding the chimeric coat protein is packaged within the phage, selection of the phage on the basis of the binding properties of the polypeptide displayed on the surface simultaneously results in the isolation of the gene encoding the polypeptide. This unit describes the background to the technique, and illustrates how it has been applied to a number of different problems, each of which has its neurobiological counterparts. Although this overview concentrates on the use of filamentous phage, which is the most popular platform, other systems are also described. Curr. Protoc. Neurosci. 51:5.12.1‐5.12.27. © 2010 by John Wiley & Sons, Inc.

Keywords: phage; phage display; antibody; peptide; protein‐protein interactions; cDNA; genomic library

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Filamentous Phage Biology
  • Phage Display
  • Vector Systems Used for Phage Display
  • Use of Phage‐Display Libraries to Map Protein‐Binding Sites
  • Displaying cDNA and Genomic Libraries
  • Selecting Antibodies by Phage Display
  • Improving Affinity
  • Using Phage Antibodies as a Discovery Tool
  • Disease‐Specific Phage Antibody Libraries
  • Displaying Other Proteins
  • Specific Phage Display Applications in Neurobiology
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Ames, R.S., Tornetta, M.A., Jones, C.S., and Tsui, P. 1994. Isolation of neutralizing anti‐C5a monoclonal antibodies from a filamentous phage monovalent Fab display library. J. Immunol. 152:4572‐4581.
   Ames, R.S., Tornetta, M.A., McMillan, L.J., Kaiser, K.F., Holmes, S.D., Appelbaum, E., Cusimano, D.M., Theisen, T.W., Gross, M.S., Jones, C.S. et al. 1995. Neutralizing murine monoclonal antibodies to human IL‐5 isolated from hybridomas and a filamentous phage Fab display library. J. Immunol. 154:6355‐6364.
   Arndt, M.A., Krauss, J., Schwarzenbacher, R., Vu, B.K., Greene, S., and Rybak, S.M. 2003. Generation of a highly stable, internalizing anti‐CD22 single‐chain Fv fragment for targeting non‐Hodgkin's lymphoma. Int. J. Cancer 107:822‐829.
   Atabani, S.F., Obeid, O.E., Chargelegue, D., Aaby, P., Whittle, H., and Steward, M.W. 1997. Identification of an immunodominant neutralizing and protective epitope from measles virus fusion protein by using human sera from acute infection. J. Virol. 71:7240‐7245.
   Ayriss, J., Woods, T., Bradbury, A., and Pavlik, P. 2007. High‐throughput screening of single‐chain antibodies using multiplexed flow cytometry. J. Proteome Res. 6:1072‐1082.
   Balass, M., Heldman, Y., Cabilly, S., Givol, D., Katchalski‐Katzir, E., and Fuchs, S. 1993. Identification of a hexapeptide that mimics a conformation‐dependent binding site of acetylcholine receptor by use of a phage‐epitope library. Proc. Natl. Acad. Sci. U.S.A. 90:10638‐10642.
   Balass, M., Katchalski‐Katzir, E., and Fuchs, S. 1997. The alpha‐bungarotoxin binding site on the nicotinic acetylcholine receptor: analysis using a phage‐epitope library. Proc. Natl. Acad. Sci. U.S.A. 94:6054‐6058.
   Barbas, S.M., Ditzel, H.J., Salonen, E.M., Yang, W.P., Silverman, G.J., and Burton, D.R. 1995. Human autoantibody recognition of DNA. Proc. Natl. Acad. Sci. U.S.A. 92:2529‐2533.
   Bauer, M. and Smith, G.P. 1988. Filamentous phage morphogenetic signal sequence and orientation of DNA in the virion and gene‐V protein complex. Virology 167:166‐175.
   Becerril, B., Poul, M.A., and Marks, J.D. 1999. Toward selection of internalizing antibodies from phage libraries. Biochem. Biophys. Res. Commun. 255:386‐393.
   Beghetto, E., Pucci, A., Minenkova, O., Spadoni, A., Bruno, L., Buffolano, W., Soldati, D., Felici, F., and Gargano, N. 2001. Identification of a human immunodominant B‐cell epitope within the GRA1 antigen of Toxoplasma gondii by phage display of cDNA libraries. Int. J. Parasitol. 31:1659‐1668.
   Bentley, L., Fehrsen, J., Jordaan, F., Huismans, H., and du Plessis, D.H. 2000. Identification of antigenic regions on VP2 of African horsesickness virus serotype 3 by using phage‐displayed epitope libraries. J. Gen. Virol. 81:993‐1000.
   Berks, B.C. 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22:393‐404.
   Berks, B.C., Sargent, F., and Palmer, T. 2000. The Tat protein export pathway. Mol. Microbiol. 35:260‐274.
   Berks, B.C., Palmer, T., and Sargent, F. 2005. Protein targeting by the bacterial twin‐arginine translocation (Tat) pathway. Curr. Opin. Microbiol. 8:174‐181.
   Birtalan, S., Zhang, Y., Fellouse, F.A., Shao, L., Schaefer, G., and Sidhu, S.S. 2008. The intrinsic contributions of tyrosine, serine, glycine and arginine to the affinity and specificity of antibodies. J. Mol. Biol. 377:1518‐1528.
   Bjerketorp, J., Nilsson, M., Ljungh, A., Flock, J.I., Jacobsson, K., and Frykberg, L. 2002. A novel von Willebrand factor binding protein expressed by Staphylococcus aureus. Microbiology 148:2037‐2044.
   Blond‐Elguindi, S., Cwirla, S.E., Dower, W.J., Lipshutz, R.J., Sprang, S.R., Sambrook, J.F., and Gething, M.J. 1993. Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717‐728.
   Bluthner, M., Bautz, E.K., and Bautz, F.A. 1996. Mapping of epitopes recognized by PM/Scl autoantibodies with gene‐fragment phage display libraries. J. Immunol. Methods 198:187‐198.
   Bluthner, M., Schafer, C., Schneider, C., and Bautz, F.A. 1999. Identification of major linear epitopes on the sp100 nuclear PBC autoantigen by the gene‐fragment phage‐display technology. Autoimmunity 29:33‐42.
   Boder, E.T., Midelfort, K.S., and Wittrup, K.D. 2000. Directed evolution of antibody fragments with monovalent femtomolar antigen‐binding affinity. Proc. Natl. Acad. Sci. U.S.A. 97:10701‐10705.
   Bonnycastle, L.L., Mehroke, J.S., Rashed, M., Gong, X., and Scott, J.K. 1996. Probing the basis of antibody reactivity with a panel of constrained peptide libraries displayed by filamentous phage. J. Mol. Biol. 258:747‐762.
   Bottger, V., Bottger, A., Howard, S.F., Picksley, S.M., Chene, P., Garcia‐Echeverria, C., Hochkeppel, H.K., and Lane, D.P. 1996. Identification of novel mdm2 binding peptides by phage display. Oncogene 13:2141‐2147.
   Bowley, D.R., Labrijn, A.F., Zwick, M.B., and Burton, D.R. 2007. Antigen selection from an HIV‐1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng. Des. Sel. 20:81‐90.
   Brasch, M.A., Hartley, J.L., and Vidal, M. 2004. ORFeome cloning and systems biology: Standardized mass production of the parts from the parts‐list. Genome Res. 14:2001‐2009.
   Bross, P., Bussmann, K., Keppner, W., and Rasched, I. 1988. Functional analysis of the adsorption protein of two filamentous phages with different host specificities. J. Gen. Microbiol. 134:461‐471.
   Buchli, P.J., Wu, Z., and Ciardelli, T.L. 1997. The functional display of interleukin‐2 on filamentous phage. Arch. Biochem. Biophys. 339:79‐84.
   Bukanov, N.O., Meek, A.L., Klinger, K.W., Landes, G.M., and Ibraghimov‐Beskrovnaya, O. 2000. A modified two‐step phage display selection for isolation of polycystin‐1 ligands. Funct. Integr. Genomics 1:193‐199.
   Burritt, J.B., Bond, C.W., Doss, K.W., and Jesaitis, A.J. 1996. Filamentous phage display of oligopeptide libraries. Anal. Biochem. 238:1‐13.
   Burton, D.R., Barbas, C.F. 3rd, Persson, M.A., Koenig, S., Chanock, R.M., and Lerner, R.A. 1991. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc. Natl. Acad. Sci. U.S.A. 88:10134‐10137.
   Cabibbo, A., Sporeno, E., Toniatti, C., Altamura, S., Savino, R., Paonessa, G., and Ciliberto, G. 1995. Monovalent phage display of human interleukin (hIL)‐6: Selection of superbinder variants from a complex molecular repertoire in the hIL‐6 D‐helix. Gene 167:41‐47.
   Cai, X. and Garen, A. 1997. Comparison of fusion phage libraries displaying VH or single‐chain Fv antibody fragments derived from the antibody repertoire of a vaccinated melanoma patient as a source of melanoma‐specific targeting molecules. Proc. Natl. Acad. Sci. U.S.A. 94:9261‐9266.
   Carbonell, X. and Villaverde, A. 1996. Peptide display on functional tailspike protein of bacteriophage P22. Gene 176:225‐229.
   Chaparro‐Riggers, J.F., Breves, R., Maurer, K.H., and Bornscheuer, U. 2006. Modulation of infectivity in phage display as a tool to determine the substrate specificity of proteases. Chembiochem 7:965‐970.
   Chappel, J.A., He, M., and Kang, A.S. 1998. Modulation of antibody display on M13 filamentous phage. J. Immunol. Methods 221:25‐34.
   Chargelegue, D., Obeid, O.E., Hsu, S.C., Shaw, M.D., Denbury, A.N., Taylor, G., and Steward, M.W. 1998. A peptide mimic of a protective epitope of respiratory syncytial virus selected from a combinatorial library induces virus‐neutralizing antibodies and reduces viral load in vivo. J. Virol. 72:2040‐2046.
   Chasteen, L., Ayriss, J., Pavlik, P., and Bradbury, A.R. 2006. Eliminating helper phage from phage display. Nucleic Acids Res. 34:e145.
   Cheadle, C., Ivashchenko, Y., South, V., Searfoss, G.H., French, S., Howk, R., Ricca, G.A., and Jaye, M. 1994. Identification of a Src SH3 domain binding motif by screening a random phage display library. J. Biol. Chem. 269:24034‐24039.
   Clackson, T. and Wells, J.A. 1994. In vitro selection from protein and peptide libraries. Trends Biotechnol. 12:173‐184.
   Clark, M.A., Hawkins, N.J., Papaioannou, A., Fiddes, R.J., and Ward, R.L. 1997. Isolation of human anti‐c‐erbB‐2 Fabs from a lymph node‐derived phage display library. Clin. Exp. Immunol. 109:166‐174.
   Coia, G., Hudson, P.J., and Irving, R.A. 2001. Protein affinity maturation in vivo using E. coli mutator cells. J. Immunol. Methods 251:187‐193.
   Coley, A.M., Campanale, N.V., Casey, J.L., Hodder, A.N., Crewther, P.E., Anders, R.F., Tilley, L.M., and Foley, M. 2001. Rapid and precise epitope mapping of monoclonal antibodies against Plasmodium falciparum AMA1 by combined phage display of fragments and random peptides. Protein Eng. 14:691‐698.
   Cortese, I., Capone, S., Tafi, R., Grimaldi, L.M., Nicosia, A., and Cortese, R. 1998. Identification of peptides binding to IgG in the CSF of multiple sclerosis patients. Mult. Scler. 4:31‐36.
   Cortese, I., Capone, S., Luchetti, S., Cortese, R., and Nicosia, A. 2001. Cross‐reactive phage‐displayed mimotopes lead to the discovery of mimicry between HSV‐1 and a brain‐specific protein. J. Neuroimmunol. 113:119‐128.
   Cortese, R., Felici, F., Galfre, G., Luzzago, A., Monaci, P., and Nicosia, A. 1994. Epitope discovery using peptide libraries displayed on phage. Trends Biotechnol. 12:262‐267.
   Crameri, R. and Blaser, K. 1996. Cloning Aspergillus fumigatus allergens by the pJuFo filamentous phage display system. Int. Arch. Allergy Immunol. 110:41‐45.
   Crameri, R., Jaussi, R., Menz, G., and Blaser, K. 1994. Display of expression products of cDNA libraries on phage surfaces. A versatile screening system for selective isolation of genes by specific gene‐product/ligand interaction. Eur. J. Biochem. 226:53‐58.
   Cwirla, S.E., Peters, E.A., Barrett, R.W., and Dower, W.J. 1990. Peptides on phage: A vast library of peptides for identifying ligands. Proc. Natl. Acad. Sci. U.S.A. 87:6378‐6382.
   Cwirla, S.E., Balasubramanian, P., Duffin, D.J., Wagstrom, C.R., Gates, C.M., Singer, S.C., Davis, A.M., Tansik, R.L., Mattheakis, L.C., Boytos, C.M., Schatz, P.J., Baccanari, D.P., Wrighton, N.C., Barrett, R.W., and Dower, W.J. 1997. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 276:1696‐1699.
   de Gier, J.W. and Luirink, J. 2001. Biogenesis of inner membrane proteins in Escherichia coli. Mol. Microbiol. 40:314‐322.
   de Haard, H.J., van Neer, N., Reurs, A., Hufton, S.E., Roovers, R.C., Henderikx, P., de Bruine, A.P., Arends, J.W., and Hoogenboom, H.R. 1999. A large non‐immunized human Fab fragment phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J. Biol. Chem. 274:18218‐18230.
   de Kruif, J., Boel, E., and Logtenberg, T. 1995a. Selection and application of human single chain Fv antibody fragments from a semi‐synthetic phage antibody display library with designed CDR3 regions. J. Mol. Biol. 248:97‐105.
   de Kruif, J., Terstappen, L., Boel, E., and Logtenberg, T. 1995b. Rapid selection of cell subpopulation‐specific human monoclonal antibodies from a synthetic phage antibody library. Proc. Natl. Acad. Sci. U.S.A. 92:3938‐3942.
   Deng, Q., Zhai, J.W., Michel, M.L., Zhang, J., Qin, J., Kong, Y.Y., Zhang, X.X., Budkowska, A., Tiollais, P., Wang, Y., and Xie, Y.H. 2007. Identification and characterization of peptides that interact with hepatitis B virus via the putative receptor binding site. J. Virol. 81:4244‐4254.
   Deng, S.J., MacKenzie, C.R., Sadowska, J., Michniewicz, J., Young, N.M., Bundle, D.R., and Narang, S.A. 1994. Selection of antibody single‐chain variable fragments with improved carbohydrate binding by phage display. J. Biol. Chem. 269:9533‐9538.
   Deng, S.J., MacKenzie, C.R., Hirama, T., Brousseau, R., Lowary, T.L., Young, N.M., Bundle, D.R., and Narang, S.A. 1995. Basis for selection of improved carbohydrate‐binding single‐chain antibodies from synthetic gene libraries. Proc. Natl. Acad. Sci. U.S.A. 92:4992‐4996.
   Dennis, M.S. and Lazarus, R.A. 1994a. Kunitz domain inhibitors of tissue factor‐factor VIIa. I. Potent inhibitors selected from libraries by phage display. J. Biol. Chem. 269:22129‐22136.
   Dennis, M.S. and Lazarus, R.A. 1994b. Kunitz domain inhibitors of tissue factor‐factor VIIa. II. Potent and specific inhibitors by competitive phage selection. J. Biol. Chem. 269:22137‐22144.
   Dennis, M.S., Herzka, A., and Lazarus, R.A. 1995. Potent and selective Kunitz domain inhibitors of plasma kallikrein designed by phage display. J. Biol. Chem. 270:25411‐25417.
   Dente, L., Vetriani, C., Zucconi, A., Pelicci, G., Lanfrancone, L., Pelicci, P.G., and Cesareni, G. 1997. Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J. Mol. Biol. 269:694‐703.
   Di Marco, A., Gloaguen, I., Demartis, A., Saggio, I., Graziani, R., Paonessa, G., and Laufer, R. 1997. Agonistic and antagonistic variants of ciliary neurotrophic factor (CNTF) reveal functional differences between membrane‐bound and soluble CNTF alpha‐receptor. J. Biol. Chem. 272:23069‐23075.
   Di Niro, R., Ferrara, F., Not, T., Bradbury, A., Chirdo, F., Marzari, R., and Sblattero, D. 2005. Characterizing monoclonal antibody epitopes by filtered gene fragment phage display. Biochem. J. 388:889‐894.
   Dong, L., Chen, S., Richter, M., and Schachner, M. 2002. Single‐chain variable fragment antibodies against the neural adhesion molecule CHL1 (close homolog of L1) enhance neurite outgrowth. J. Neurosci. Res. 69:437‐447.
   Dong, L., Chen, S., and Schachner, M. 2003. Single chain Fv antibodies against neural cell adhesion molecule L1 trigger L1 functions in cultured neurons. Mol. Cell Neurosci. 22:234‐247.
   Driessen, A.J., Manting, E.H., and van der Does, C. 2001. The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol. 8:492‐498.
   Dunn, I.S. 1996. Total modification of the bacteriophage lambda tail tube major subunit protein with foreign peptides. Gene 183:15‐21.
   Efimov, V.P., Nepluev, I.V., and Mesyanzhinov, V.V. 1995. Bacteriophage T4 as a surface display vector. Virus Genes 10:173‐177.
   Fack, F., Hugle‐Dorr, B., Song, D., Queitsch, I., Petersen, G., and Bautz, E.K. 1997. Epitope mapping by phage display: Random versus gene‐fragment libraries. J. Immunol. Methods 206:43‐52.
   Farrar, J., Portolano, S., Willcox, N., Vincent, A., Jacobson, L., Newsom‐Davis, J., Rapoport, B., and McLachlan, S.M. 1997. Diverse Fab specific for acetylcholine receptor epitopes from a myasthenia gravis thymus combinatorial library. Int. Immunol. 9:1311‐1318.
   Feldman, A.R., Shapova, Y.A., Wu, S.S., Oliver, D.C., Heller, M., McIntosh, L.P., Scott, J.K., and Paetzel, M. 2008. Phage display and crystallographic analysis reveals potential substrate/binding site interactions in the protein secretion chaperone CsaA from Agrobacterium tumefaciens. J. Mol. Biol. 379:457‐470.
   Felici, F., Castagnoli, L., Musacchio, A., Jappelli, R., and Cesareni, G. 1991. Selection of antibody ligands from a large library of oligopeptides expressed on a multivalent exposition vector. J. Mol. Biol. 222:301‐310.
   Fellouse, F.A., Wiesmann, C., and Sidhu, S.S. 2004. Synthetic antibodies from a four‐amino‐acid code: A dominant role for tyrosine in antigen recognition. Proc. Natl. Acad. Sci. U.S.A. 101:12467‐12472.
   Fellouse, F.A., Li, B., Compaan, D.M., Peden, A.A., Hymowitz, S.G., and Sidhu, S.S. 2005. Molecular recognition by a binary code. J. Mol. Biol. 348:1153‐1162.
   Fellouse, F.A., Esaki, K., Birtalan, S., Raptis, D., Cancasci, V.J., Koide, A., Jhurani, P., Vasser, M., Wiesmann, C., Kossiakoff, A.A., Koide, S., and Sidhu, S.S. 2007. High‐throughput generation of synthetic antibodies from highly functional minimalist phage‐displayed libraries. J. Mol. Biol. 373:924‐940.
   Figini, M., Obici, L., Mezzanzanica, D., Griffiths, A., Colnaghi, M. I., Winter, G., and Canevari, S. 1998. Panning phage antibody libraries on cells: Isolation of human Fab fragments against ovarian carcinoma using guided selection. Cancer Res. 58:991‐996.
   Folgori, A., Tafi, R., Meola, A., Felici, F., Galfre, G., Cortese, R., Monaci, P., and Nicosia, A. 1994. A general strategy to identify mimotopes of pathological antigens using only random peptide libraries and human sera. EMBO J. 13:2236‐2243.
   Fostieri, E., Tzartos, S.J., Berrih‐Aknin, S., Beeson, D., and Mamalaki, A. 2005. Isolation of potent human Fab fragments against a novel highly immunogenic region on human muscle acetylcholine receptor which protect the receptor from myasthenic autoantibodies. Eur. J. Immunol. 35:632‐643.
   Fransen, M., Van Veldhoven, P.P., and Subramani, S. 1999. Identification of peroxisomal proteins by using M13 phage protein VI phage display: Molecular evidence that mammalian peroxisomes contain a 2,4‐dienoyl‐CoA reductase. Biochem. J. 340:561‐568.
   Frederickson, S., Renshaw, M.W., Lin, B., Smith, L.M., Calveley, P., Springhorn, J.P., Johnson, K., Wang, Y., Su, X., Shen, Y., and Bowdish, K.S. 2006. A rationally designed agonist antibody fragment that functionally mimics thrombopoietin. Proc. Natl. Acad. Sci. U.S.A. 103:14307‐14312.
   Fuh, G., and Sidhu, S.S. 2000. Efficient phage display of polypeptides fused to the carboxy‐terminus of the M13 gene‐3 minor coat protein. FEBS Lett. 480:231‐234.
   Fuh, G., Pisabarro, M.T., Li, Y., Quan, C., Lasky, L.A., and Sidhu, S.S. 2000. Analysis of PDZ domain‐ligand interactions using carboxyl‐terminal phage display. J. Biol. Chem. 275:21486‐21491.
   Gao, C., Mao, S., Lo, C.H., Wirsching, P., Lerner, R.A., and Janda, K.D. 1999. Making artificial antibodies: A format for phage display of combinatorial heterodimeric arrays. Proc. Natl. Acad. Sci. U.S.A. 96:6025‐6030.
   Gao, C., Mao, S., Kaufmann, G., Wirsching, P., Lerner, R.A., and Janda, K.D. 2002. A method for the generation of combinatorial antibody libraries using pIX phage display. Proc. Natl. Acad. Sci. U.S.A. 99:12612‐12616.
   Gao, C., Mao, S., Ronca, F., Zhuang, S., Quaranta, V., Wirsching, P., and Janda, K.D. 2003. De novo identification of tumor‐specific internalizing human antibody‐receptor pairs by phage‐display methods. J. Immunol. Methods 274:185‐197.
   Garcia‐Rodriguez, C., Levy, R., Arndt, J.W., Forsyth, C.M., Razai, A., Lou, J., Geren, I., Stevens, R.C., and Marks, J.D. 2007. Molecular evolution of antibody cross‐reactivity for two subtypes of type A botulinum neurotoxin. Nat. Biotechnol. 25:107‐116.
   Gazarian, T.G., Selisko, B., Gurrola, G.B., Hernandez, R., Possani, L.D., and Gazarian, K.G. 2003. Potential of peptides selected from random phage‐displayed libraries to mimic conformational epitopes: a study on scorpion toxin Cn2 and the neutralizing monoclonal antibody BCF2. Comb. Chem. High Throughput Screen. 6:119‐132.
   Goenaga, A.L., Zhou, Y., Legay, C., Bougherara, H., Huang, L., Liu, B., Drummond, D.C., Kirpotin, D.B., Auclair, C., Marks, J.D., and Poul, M.A. 2007. Identification and characterization of tumor antigens by using antibody phage display and intrabody strategies. Mol. Immunol. 44:3777‐3788.
   Govarts, C., Somers, K., Hupperts, R., Stinissen, P., and Somers, V. 2007. Exploring cDNA phage display for autoantibody profiling in the serum of multiple sclerosis patients: Optimization of the selection procedure. Ann. N.Y. Acad. Sci. 1109:372‐384.
   Gram, H., Schmitz, R., Zuber, J.F., and Baumann, G. 1997. Identification of phosphopeptide ligands for the Src‐homology 2 (SH2) domain of Grb2 by phage display. Eur. J. Biochem. 246:633‐637.
   Graus, Y.F., de Baets, M.H., Parren, P.W., Berrih‐Aknin, S., Wokke, J., van Breda Vriesman, P.J., and Burton, D.R. 1997. Human anti‐nicotinic acetylcholine receptor recombinant Fab fragments isolated from thymus‐derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. J. Immunol. 158:1919‐1929.
   Graus, Y.F., de Baets, M.H., and Burton, D.R. 1998a. Antiacetylcholine receptor Fab fragments isolated from thymus‐derived phage display libraries from myasthenia gravis patients reflect predominant specificities in serum and block the action of pathogenic serum antibodies. Ann. N.Y. Acad. Sci. 841:414‐417.
   Graus, Y.F., Verschuuren, J.J., Degenhardt, A., van Breda Vriesman, P.J., De Baets, M.H., Posner, J.B., Burton, D.R., and Dalmau, J. 1998b. Selection of recombinant anti‐HuD Fab fragments from a phage display antibody library of a lung cancer patient with paraneoplastic encephalomyelitis. J. Neuroimmunol. 82:200‐209.
   Griffiths, A.D., Malmqvist, M., Marks, J.D., Bye, J.M., Embleton, M.J., McCafferty, J., Baier, M., Holliger, K.P., Gorick, B.D., Hughes‐Jones, N.C., Hoogenboom, H.R., and Winter, G. 1993. Human anti‐self antibodies with high specificity from phage display libraries. EMBO J. 12:725‐734.
   Hajitou, A., Pasqualini, R., and Arap, W. 2006. Vascular targeting: Recent advances and therapeutic perspectives. Trends Cardiovasc. Med. 16:80‐88.
   Hammer, J., Takacs, B., and Sinigaglia, F. 1992. Identification of a motif for HLA‐DR1 binding peptides using M13 display libraries. J. Exp. Med. 176:1007‐1013.
   Hammer, J., Valsasnini, P., Tolba, K., Bolin, D., Higelin, J., Takacs, B., and Sinigaglia, F. 1993. Promiscuous and allele‐specific anchors in HLA‐DR‐binding peptides. Cell 74:197‐203.
   Hammer, J., Belunis, C., Bolin, D., Papadopoulos, J., Walsky, R., Higelin, J., Danho, W., Sinigaglia, F., and Nagy, Z.A. 1994. High‐affinity binding of short peptides to major histocompatibility complex class II molecules by anchor combinations. Proc. Natl. Acad. Sci. U.S.A. 91:4456‐4460.
   Han, Z., Xiong, C., Mori, T., and Boyd, M.R. 2002. Discovery of a stable dimeric mutant of cyanovirin‐N (CV‐N) from a T7 phage‐displayed CV‐N mutant library. Biochem. Biophys. Res. Commun. 292:1036‐1043.
   Hansen, M.H., Ostenstad, B., and Sioud, M. 2001. Identification of immunogenic antigens using a phage‐displayed cDNA library from an invasive ductal breast carcinoma tumour. Int. J. Oncol. 19:1303‐1309.
   Harris, S.L., Craig, L., Mehroke, J.S., Rashed, M., Zwick, M.B., Kenar, K., Toone, E.J., Greenspan, N., Auzanneau, F.I., Marino‐Albernas, J.R., Pinto, B.M., and Scott, J.K. 1997. Exploring the basis of peptide‐carbohydrate crossreactivity: Evidence for discrimination by peptides between closely related anti‐carbohydrate antibodies. Proc. Natl. Acad. Sci. U.S.A. 94:2454‐2459.
   Hathaway, L.J., Obeid, O.E., and Steward, M.W. 1998. Protection against measles virus‐induced encephalitis by antibodies from mice immunized intranasally with a synthetic peptide immunogen. Vaccine 16:135‐141.
   Heitner, T., Moor, A., Garrison, J.L., Marks, C., Hasan, T., and Marks, J.D. 2001. Selection of cell binding and internalizing epidermal growth factor receptor antibodies from a phage display library. J. Immunol. Methods 248:17‐30.
   Held, H.A. and Sidhu, S.S. 2004. Comprehensive mutational analysis of the M13 major coat protein: Improved scaffolds for C‐terminal phage display. J. Mol. Biol. 340:587‐597.
   Hoess, R., Brinkmann, U., Handel, T., and Pastan, I. 1993. Identification of a peptide which binds to the carbohydrate‐specific monoclonal antibody B3. Gene 128:43‐49.
   Hoffman, N.G., Sparks, A.B., Carter, J.M., and Kay, B.K. 1996. Binding properties of SH3 peptide ligands identified from phage‐displayed random peptide libraries. Mol. Divers. 2:5‐12.
   Holliger, P. and Riechmann, L. 1997. A conserved infection pathway for filamentous bacteriophages is suggested by the structure of the membrane penetration domain of the minor coat protein g3p from phage fd. Structure 5:265‐275.
   Hou, S.T., Dove, M., Anderson, E., Zhang, J., and MacKenzie, C.R. 2004. Identification of polypeptides with selective affinity to intact mouse cerebellar granule neurons from a random peptide‐presenting phage library. J. Neurosci. Methods 138:39‐44.
   Houshmand, H. and Bergqvist, A. 2003. Interaction of hepatitis C virus NS5A with La protein revealed by T7 phage display. Biochem. Biophys. Res. Commun. 309:695‐701.
   Hufton, S.E., Moerkerk, P.T., Meulemans, E.V., de Bruine, A., Arends, J.W., and Hoogenboom, H.R. 1999. Phage display of cDNA repertoires: The pVI display system and its applications for the selection of immunogenic ligands. J. Immunol. Methods 231:39‐51.
   Huie, M.A., Cheung, M.C., Muench, M.O., Becerril, B., Kan, Y.W., and Marks, J.D. 2001. Antibodies to human fetal erythroid cells from a nonimmune phage antibody library. Proc. Natl. Acad. Sci. U.S.A. 98:2682‐2687.
   Iannolo, G., Minenkova, O., Petruzzelli, R., and Cesareni, G. 1995. Modifying filamentous phage capsid: Limits in the size of the major capsid protein. J. Mol. Biol. 248:835‐844.
   Jacobsson, K. and Frykberg, L. 1995. Cloning of ligand‐binding domains of bacterial receptors by phage display. Biotechniques 18:878‐885.
   Jacobsson, K. and Frykberg, L. 1996. Phage display shot‐gun cloning of ligand‐binding domains of prokaryotic receptors approaches 100% correct clones. Biotechniques 20:1070‐1076, 1078, 1080‐1071.
   Jacobsson, K., Jonsson, H., Lindmark, H., Guss, B., Lindberg, M., and Frykberg, L. 1997. Shot‐gun phage display mapping of two streptococcal cell‐surface proteins. Microbiol. Res. 152:121‐128.
   Jespers, L., Jenne, S., Lasters, I., and Collen, D. 1997. Epitope mapping by negative selection of randomized antigen libraries displayed on filamentous phage. J. Mol. Biol. 269:704‐718.
   Jespers, L.S., Messens, J.H., De Keyser, A., Eeckhout, D., Van den Brande, I., Gansemans, Y.G., Lauwereys, M.J., Vlasuk, G.P., and Stanssens, P.E. 1995. Surface expression and ligand‐based selection of cDNAs fused to filamentous phage gene VI. Biotechnology 13:378‐382.
   Jiang, J., Abu‐Shilbayeh, L., and Rao, V.B. 1997. Display of a PorA peptide from Neisseria meningitidis on the bacteriophage T4 capsid surface. Infect. Immun. 65:4770‐4777.
   Johnson, D.L., Farrell, F.X., Barbone, F.P., McMahon, F.J., Tullai, J., Hoey, K., Livnah, O., Wrighton, N.C., Middleton, S.A., Loughney, D.A., Stura, E.A., Dower, W.J., Mulcahy, L.S., Wilson, I.A., and Jolliffe, L.K. 1998. Identification of a 13 amino acid peptide mimetic of erythropoietin and description of amino acids critical for the mimetic activity of EMP1. Biochemistry 37:3699‐3710.
   Kakinuma, A., Portolano, S., Chazenbalk, G., Rapoport, B., and McLachlan, S.M. 1997. Insight into screening immunoglobulin gene combinatorial libraries in a phage display vector: A tale of two antibodies. Autoimmunity 25:73‐84.
   Kalnina, Z., Silina, K., Meistere, I., Zayakin, P., Rivosh, A., Abols, A., Leja, M., Minenkova, O., Schadendorf, D., and Line, A. 2008. Evaluation of T7 and lambda phage display systems for survey of autoantibody profiles in cancer patients. J. Immunol. Methods 334:37‐50.
   Kehoe, J.W. and Kay, B.K. 2005. Filamentous phage display in the new millennium. Chem. Rev. 105:4056‐4072.
   Kehoe, J.W., Velappan, N., Walbolt, M., Rasmussen, J., King, D., Lou, J., Knopp, K., Pavlik, P., Marks, J.D., Bertozzi, C.R., and Bradbury, A.R. 2006. Using phage display to select antibodies recognizing post‐translational modifications independently of sequence context. Mol. Cell Proteomics 5:2350‐2363.
   Keresztessy, Z., Csosz, E., Harsfalvi, J., Csomos, K., Gray, J., Lightowlers, R.N., Lakey, J.H., Balajthy, Z., and Fesus, L. 2006. Phage display selection of efficient glutamine‐donor substrate peptides for transglutaminase 2. Protein Sci. 15:2466‐2480.
   Kiewitz, A. and Wolfes, H. 1997. Mapping of protein‐protein interactions between c‐myb and its coactivator CBP by a new phage display technique. FEBS Lett. 415:258‐262.
   Knappik, A., Ge, L., Honegger, A., Pack, P., Fischer, M., Wellnhofer, G., Hoess, A., Wolle, J., Pluckthun, A., and Virnekas, B. 2000. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J. Mol. Biol. 296:57‐86.
   Koch, H.G., Moser, M., and Muller, M. 2003. Signal recognition particle‐dependent protein targeting, universal to all kingdoms of life. Rev. Physiol. Biochem. Pharmacol. 146:55‐94.
   Kolly, R., Thiel, M.A., Herrmann, T., and Pluckthun, A. 2007. Monovalent antibody scFv fragments selected to modulate T‐cell activation by inhibition of CD86‐CD28 interaction. Protein Eng. Des. Sel. 20:91‐98.
   Krebs, B., Rauchenberger, R., Reiffert, S., Rothe, C., Tesar, M., Thomassen, E., Cao, M., Dreier, T., Fischer, D., Hoss, A., Inge, L., Knappik, A., Marget, M., Pack, P., Meng, X.Q., Schier, R., Sohlemann, P., Winter, J., Wolle, J., and Kretzschmar, T. 2001. High‐throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods 254:67‐84.
   Kretzschmar, T. and Geiser, M. 1995. Evaluation of antibodies fused to minor coat protein III and major coat protein VIII of bacteriophage M13. Gene 155:61‐65.
   Krumpe, L.R., Atkinson, A.J., Smythers, G.W., Kandel, A., Schumacher, K.M., McMahon, J.B., Makowski, L., and Mori, T. 2006. T7 lytic phage‐displayed peptide libraries exhibit less sequence bias than M13 filamentous phage‐displayed peptide libraries. Proteomics 6:4210‐4222.
   Kurakin, A., Wu, S., and Bredesen, D.E. 2004. Target‐assisted iterative screening of phage surface display cDNA libraries. Methods Mol. Biol. 264:47‐60.
   Kuwabara, I., Maruyama, H., Mikawa, Y.G., Zuberi, R.I., Liu, F.T., and Maruyama, I.N. 1997. Efficient epitope mapping by bacteriophage lambda surface display. Nat. Biotechnol. 15:74‐78.
   Kwasnikowski, P., Kristensen, P., and Markiewicz, W.T. 2005. Multivalent display system on filamentous bacteriophage pVII minor coat protein. J. Immunol. Methods 307:135‐143.
   Lane, D.P. and Stephen, C.W. 1993. Epitope mapping using bacteriophage peptide libraries. Curr. Opin. Immunol. 5:268‐271.
   Lassen, K.S., Bradbury, A.R., Rehfeld, J.F., and Heegaard, N.H. 2008. Microscale characterization of the binding specificity and affinity of a monoclonal antisulfotyrosyl IgG antibody. Electrophoresis 29:2557‐2564.
   Lee, C.V., Hymowitz, S.G., Wallweber, H.J., Gordon, N.C., Billeci, K.L., Tsai, S.P., Compaan, D.M., Yin, J., Gong, Q., Kelley, R.F., DeForge, L.E., Martin, F., Starovasnik, M.A., and Fuh, G. 2006. Synthetic anti‐BR3 antibodies that mimic BAFF binding and target both human and murine B cells. Blood 108:3103‐3111.
   Lehmann, D., Sodoyer, R., and Leterme, S. 2004. Characterization of BoHV‐1 gE envelope glycoprotein mimotopes obtained by phage display. Vet. Microbiol. 104:1‐17.
   Li, B., Russell, S.J., Compaan, D.M., Totpal, K., Marsters, S.A., Ashkenazi, A., Cochran, A.G., Hymowitz, S.G., and Sidhu, S.S. 2006. Activation of the proapoptotic death receptor DR5 by oligomeric peptide and antibody agonists. J. Mol. Biol. 361:522‐536.
   Li, H.X., Hwang, B.Y., Laxmikanthan, G., Blaber, S.I., Blaber, M., Golubkov, P.A., Ren, P., Iverson, B.L., and Georgiou, G. 2008. Substrate specificity of human kallikreins 1 and 6 determined by phage display. Protein Sci. 17:664‐672.
   Li, M., Yu, W., Chen, C.H., Cwirla, S., Whitehorn, E., Tate, E., Raab, R., Bremer, M., and Dower, B. 1996. In vitro selection of peptides acting at a new site of NMDA glutamate receptors. Nat. Biotechnol. 14:986‐991.
   Li, M. 1997. Use of a modified bacteriophage to probe the interactions between peptides and ion channel receptors in mammalian cells. Nat. Biotechnol. 15:559‐563.
   Lindmark, H., Jacobsson, K., Frykberg, L., and Guss, B. 1996. Fibronectin‐binding protein of Streptococcus equi subsp. zooepidemicus. Infect. Immun. 64:3993‐3999.
   Lindqvist, B.H., and Naderi, S. 1995. Peptide presentation by bacteriophage P4. FEMS Microbiol. Rev. 17:33‐39.
   Liu, B., Conrad, F., Cooperberg, M.R., Kirpotin, D.B., and Marks, J.D. 2004. Mapping tumor epitope space by direct selection of single‐chain Fv antibody libraries on prostate cancer cells. Cancer Res. 64:704‐710.
   Livnah, O., Stura, E.A., Johnson, D.L., Middleton, S.A., Mulcahy, L.S., Wrighton, N.C., Dower, W.J., Jolliffe, L.K., and Wilson, I.A. 1996. Functional mimicry of a protein hormone by a peptide agonist: The EPO receptor complex at 2.8 Å. Science 273:464‐471.
   Lorimer, I.A. and Pastan, I. 1995. Random recombination of antibody single chain Fv sequences after fragmentation with DNaseI in the presence of Mn2+. Nucleic Acids Res. 23:3067‐3068.
   Low, N.M., Holliger, P.H., and Winter, G. 1996. Mimicking somatic hypermutation: Affinity maturation of antibodies displayed on bacteriophage using a bacterial mutator strain. J. Mol. Biol. 260:359‐368.
   Lowman, H.B. and Wells, J.A. 1993. Affinity maturation of human growth hormone by monovalent phage display. J. Mol. Biol. 234:564‐578.
   Lowman, H.B., Bass, S.H., Simpson, N., and Wells, J.A. 1991. Selecting high‐affinity binding proteins by monovalent phage display. Biochemistry 30:10832‐10838.
   Lubkowski, J., Hennecke, F., Pluckthun, A., and Wlodawer, A. 1998. The structural basis of phage display elucidated by the crystal structure of the N‐terminal domains of g3p. Nat. Struct. Biol. 5:140‐147.
   Luzzago, A., Felici, F., Tramontano, A., Pessi, A., and Cortese, R. 1993. Mimicking of discontinuous epitopes by phage‐displayed peptides. I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene 128:51‐57.
   Magdesian, M.H., Nery, A.A., Martins, A.H., Juliano, M.A., Juliano, L., Ulrich, H., and Ferreira, S.T. 2005. Peptide blockers of the inhibition of neuronal nicotinic acetylcholine receptors by amyloid beta. J. Biol. Chem. 280:31085‐31090.
   Manting, E.H. and Driessen, A.J. 2000. Escherichia coli translocase: The unravelling of a molecular machine. Mol. Microbiol. 37:226‐238.
   Marchbank, M.T. and Deutscher, S.L. 1995. Autoimmune derived combinatorial phage display libraries: Methods in construction of and affinity selection for anti‐RNA Fabs. Nucleic Acids Symp. Ser. pp.120‐122.
   Marks, J.D., Hoogenboom, H.R., Bonnert, T.P., McCafferty, J., Griffiths, A.D., and Winter, G. 1991. By‐passing immunization. Human antibodies from V‐gene libraries displayed on phage. J. Mol. Biol. 222:581‐597.
   Marks, J.D., Griffiths, A.D., Malmqvist, M., Clackson, T.P., Bye, J.M., and Winter, G. 1992. By‐passing immunization: building high affinity human antibodies by chain shuffling. Biotechnology (N.Y.) 10:779‐783.
   Martineau, P., Jones, P., and Winter, G. 1998. Expression of an antibody fragment at high levels in the bacterial cytoplasm. J. Mol. Biol. 280:117‐127.
   Maruyama, T., Saito, I., Hayashi, Y., Kompfner, E., Fox, R.I., Burton, D.R., and Ditzel, H.J. 2004. Molecular analysis of the human autoantibody response to alpha‐fodrin in Sjogren's syndrome reveals novel apoptosis‐induced specificity. Am. J. Pathol. 165:53‐61.
   Marvin, D.A. 1998. Filamentous phage structure, infection and assembly. Curr. Opin. Struct. Biol. 8:150‐158.
   Marzari, R., Sblattero, D., Florian, F., Tongiorgi, E., Not, T., Tommasini, A., Ventura, A., and Bradbury, A. 2001. Molecular dissection of the tissue transglutaminase autoantibody response in celiac disease. J. Immunol. 166:4170‐4176.
   Matthews, D.J. and Wells, J.A. 1993. Substrate phage: Selection of protease substrates by monovalent phage display. Science 260:1113‐1117.
   Matthews, D.J., Goodman, L.J., Gorman, C.M., and Wells, J.A. 1994. A survey of furin substrate specificity using substrate phage display. Protein Sci. 3:1197‐1205.
   Mattioli, S., Imberti, L., Stellini, R., and Primi, D. 1995. Mimicry of the immunodominant conformation‐dependent antigenic site of hepatitis A virus by motifs selected from synthetic peptide libraries. J. Virol. 69:5294‐5299.
   Mazuet, C., Lerouge, D., Poul, M.A., and Blin, N. 2006. Breast carcinoma specific antibody selection combining phage display and immunomagnetic cell sorting. Biochem. Biophys. Res. Commun. 348:550‐559.
   McIntosh, R.S. and Weetman, A.P. 1997. Molecular analysis of the antibody response to thyroglobulin and thyroid peroxidase. Thyroid 7:471‐487.
   McIntosh, R.S., Asghar, M.S., Watson, P.F., Kemp, E.H., and Weetman, A.P. 1996. Cloning and analysis of IgG kappa and IgG lambda anti‐thyroglobulin autoantibodies from a patient with Hashimoto's thyroiditis: Evidence for in vivo antigen‐driven repertoire selection. J. Immunol. 157:927‐935.
   McIntosh, R.S., Asghar, M.S., Kemp, E.H., Watson, P.F., Gardas, A., Banga, J.P., and Weetman, A.P. 1997a. Analysis of immunoglobulin G kappa antithyroid peroxidase antibodies from different tissues in Hashimoto's thyroiditis. J. Clin. Endocrinol. Metab. 82:3818‐3825.
   McIntosh, R.S., Asghar, M.S., and Weetman, A.P. 1997b. The antibody response in human autoimmune thyroid disease. Clin. Sci. 92:529‐541.
   Meola, A., Delmastro, P., Monaci, P., Luzzago, A., Nicosia, A., Felici, F., Cortese, R., and Galfre, G. 1995. Derivation of vaccines from mimotopes. Immunologic properties of human hepatitis B virus surface antigen mimotopes displayed on filamentous phage. J. Immunol. 154:3162‐3172.
   Mergulhao, F.J., Summers, D.K., and Monteiro, G.A. 2005. Recombinant protein secretion in Escherichia coli. Biotechnol. Adv. 23:177‐202.
   Merlin, S., Rowold, E., Abegg, A., Berglund, C., Klover, J., Staten, N., McKearn, J.P., and Lee, S.C. 1997. Phage presentation and affinity selection of a deletion mutant of human interleukin‐3. Appl. Biochem. Biotechnol. 67:199‐214.
   Merz, D.C., Dunn, R.J., and Drapeau, P. 1995. Generating a phage display antibody library against an identified neuron. J. Neurosci. Methods 62:213‐219.
   Miao, H.Q., Hu, K., Jimenez, X., Navarro, E., Zhang, H., Lu, D., Ludwig, D.L., Balderes, P., and Zhu, Z. 2006. Potent neutralization of VEGF biological activities with a fully human antibody Fab fragment directed against VEGF receptor 2. Biochem. Biophys. Res. Commun. 345:438‐445.
   Mikawa, Y.G., Maruyama, I.N., and Brenner, S. 1996. Surface display of proteins on bacteriophage lambda heads. J. Mol. Biol. 262:21‐30.
   Mintz, P.J., Kim, J., Do, K.A., Wang, X., Zinner, R.G., Cristofanilli, M., Arap, M.A., Hong, W.K., Troncoso, P., Logothetis, C.J., Pasqualini, R., and Arap, W. 2003. Fingerprinting the circulating repertoire of antibodies from cancer patients. Nat. Biotechnol. 21:57‐63.
   Muller, M., Koch, H.G., Beck, K., and Schafer, U. 2001. Protein traffic in bacteria: Multiple routes from the ribosome to and across the membrane. Prog. Nucleic Acid Res. Mol. Biol. 66:107‐157.
   Mutuberria, R., Satijn, S., Huijbers, A., Van Der Linden, E., Lichtenbeld, H., Chames, P., Arends, J.W., and Hoogenboom, H.R. 2004. Isolation of human antibodies to tumor‐associated endothelial cell markers by in vitro human endothelial cell selection with phage display libraries. J. Immunol. Methods 287:31‐47.
   Nissim, A., Hoogenboom, H.R., Tomlinson, I.M., Flynn, G., Midgley, C., Lane, D., and Winter, G. 1994. Antibody fragments from a ‘single pot’ phage display library as immunochemical reagents. EMBO J. 13:692‐698.
   Nowak, J.E., Chatterjee, M., Mohapatra, S., Dryden, S.C., and Tainsky, M.A. 2006. Direct production and purification of T7 phage display cloned proteins selected and analyzed on microarrays. Biotechniques 40:220‐227.
   Ohara, R., Knappik, A., Shimada, K., Frisch, C., Ylera, F., and Koga, H. 2006. Antibodies for proteomic research: Comparison of traditional immunization with recombinant antibody technology. Proteomics 6:2638‐2646.
   Ohlin, M., Owman, H., Mach, M., and Borrebaeck, C.A. 1996. Light chain shuffling of a high affinity antibody results in a drift in epitope recognition. Mol. Immunol. 33:47‐56.
   Olszewska, W., Obeid, O.E., and Steward, M.W. 2000. Protection against measles virus‐induced encephalitis by anti‐mimotope antibodies: The role of antibody affinity. Virology 272:98‐105.
   Orum, H., Andersen, P.S., Oster, A., Johansen, L.K., Riise, E., Bjornvad, M., Svendsen, I., and Engberg, J. 1993. Efficient method for constructing comprehensive murine Fab antibody libraries displayed on phage. Nucleic Acids Res. 21:4491‐4498.
   Palmer, D.B., George, A.J., and Ritter, M.A. 1997. Selection of antibodies to cell surface determinants on mouse thymic epithelial cells using a phage display library. Immunology 91:473‐478.
   Pannekoek, H., van Meijer, M., Schleef, R.R., Loskutoff, D.J., and Barbas, C.F. 3rd. 1993. Functional display of human plasminogen‐activator inhibitor 1 (PAI‐1) on phages: Novel perspectives for structure‐function analysis by error‐prone DNA synthesis. Gene 128:135‐140.
   Paoluzi, S., Castagnoli, L., Lauro, I., Salcini, A.E., Coda, L., Fre, S., Confalonieri, S., Pelicci, P.G., Di Fiore, P.P., and Cesareni, G. 1998. Recognition specificity of individual EH domains of mammals and yeast. EMBO J. 17:6541‐6550.
   Parmley, S.F. and Smith, G.P. 1988. Antibody‐selectable filamentous fd phage vectors: Affinity purification of target genes. Gene 73:305‐318.
   Paschke, M. 2006. Phage display systems and their applications. Appl. Microbiol. Biotechnol. 70:2‐11.
   Paschke, M. and Hohne, W. 2005. A twin‐arginine translocation (Tat)‐mediated phage display system. Gene 350:79‐88.
   Pasqualini, R. and Ruoslahti, E. 1996. Organ targeting in vivo using phage display peptide libraries. Nature 380:364‐366.
   Perelson, A.S. and Oster, G.F. 1979. Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self‐non‐self discrimination. J. Theor. Biol. 81:645‐670.
   Peters, E.A., Schatz, P.J., Johnson, S.S., and Dower, W.J. 1994. Membrane insertion defects caused by positive charges in the early mature region of protein pIII of filamentous phage fd can be corrected by prlA suppressors. J. Bacteriol. 176:4296‐4305.
   Petersen, G., Song, D., Hugle‐Dorr, B., Oldenburg, I., and Bautz, E.K. 1995. Mapping of linear epitopes recognized by monoclonal antibodies with gene‐fragment phage display libraries. Mol. Gen. Genet. 249:425‐431.
   Popkov, M., Rader, C., and Barbas, C.F. 3rd. 2004. Isolation of human prostate cancer cell reactive antibodies using phage display technology. J. Immunol. Methods 291:137‐151.
   Portolano, S., McLachlan, S.M., and Rapoport, B. 1993. High affinity, thyroid‐specific human autoantibodies displayed on the surface of filamentous phage use V genes similar to other autoantibodies. J. Immunol. 151:2839‐2851.
   Portolano, S., Prummel, M.F., Rapoport, B., and McLachlan, S.M. 1995. Molecular cloning and characterization of human thyroid peroxidase autoantibodies of lambda light chain type. Mol. Immunol. 32:1157‐1169.
   Poul, M.A., Becerril, B., Nielsen, U.B., Morisson, P., and Marks, J.D. 2000. Selection of tumor‐specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301:1149‐1161.
   Prinz, D.M., Smithson, S.L., and Westerink, M.A. 2004. Two different methods result in the selection of peptides that induce a protective antibody response to Neisseria meningitidis serogroup C. J. Immunol. Methods 285:1‐14.
   Proba, K., Honegger, A., and Pluckthun, A. 1997. A natural antibody missing a cysteine in VH: Consequences for thermodynamic stability and folding. J. Mol. Biol. 265:161‐172.
   Puntoriero, G., Meola, A., Lahm, A., Zucchelli, S., Ercole, B.B., Tafi, R., Pezzanera, M., Mondelli, M.U., Cortese, R., Tramontano, A., Galfre, G., and Nicosia, A. 1998. Towards a solution for hepatitis C virus hypervariability: Mimotopes of the hypervariable region 1 can induce antibodies cross‐reacting with a large number of viral variants. EMBO J. 17:3521‐3533.
   Putterman, C. and Diamond, B. 1998. Immunization with a peptide surrogate for double‐stranded DNA (dsDNA) induces autoantibody production and renal immunoglobulin deposition. J. Exp. Med. 188:29‐38.
   Rajotte, D., Arap, W., Hagedorn, M., Koivunen, E., Pasqualini, R., and Ruoslahti, E. 1998. Molecular heterogeneity of the vascular endothelium revealed by in vivo phage display. J. Clin. Invest. 102:430‐437.
   Rajpal, A., Beyaz, N., Haber, L., Cappuccilli, G., Yee, H., Bhatt, R.R., Takeuchi, T., Lerner, R.A., and Crea, R. 2005. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc. Natl. Acad. Sci. U.S.A. 102:8466‐8471.
   Ramirez, E., Mas, J.M., Carbonell, X., Aviles, F.X., and Villaverde, A. 1999. Detection of molecular interactions by using a new peptide‐displaying bacteriophage biosensor. Biochem. Biophys. Res. Commun. 262:801‐805.
   Razai, A., Garcia‐Rodriguez, C., Lou, J., Geren, I.N., Forsyth, C.M., Robles, Y., Tsai, R., Smith, T.J., Smith, L.A., Siegel, R.W., Feldhaus, M., and Marks, J.D. 2005. Molecular evolution of antibody affinity for sensitive detection of botulinum neurotoxin type A. J. Mol. Biol. 351:158‐169.
   Reboul, J., Vaglio, P., Tzellas, N., Thierry‐Mieg, N., Moore, T., Jackson, C., Shin‐i, T., Kohara, Y., Thierry‐Mieg, D., Thierry‐Mieg, J., Lee, H., Hitti, J., Doucette‐Stamm, L., Hartley, J.L., Temple, G.F., Brasch, M.A., Vandenhaute, J., Lamesch, P.E., Hill, D.E., and Vidal, M. 2001. Open‐reading‐frame sequence tags (OSTs) support the existence of at least 17,300 genes in C. elegans. Nat. Genet. 27:332‐336.
   Ren, Z. and Black, L.W. 1998. Phage T4 SOC and HOC display of biologically active, full‐length proteins on the viral capsid. Gene 215:439‐444.
   Ren, Z.J., Lewis, G.K., Wingfield, P.T., Locke, E.G., Steven, A.C., and Black, L.W. 1996. Phage display of intact domains at high copy number: A system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci. 5:1833‐1843.
   Rey, E., Zeidel, M., Rhine, C., Tami, J., Krolick, K., Fischbach, M., and Sanz, I. 2000. Characterization of human anti‐acetylcholine receptor monoclonal autoantibodies from the peripheral blood of a myasthenia gravis patient using combinatorial libraries. Clin. Immunol. 96:269‐279.
   Rickles, R.J., Botfield, M.C., Weng, Z., Taylor, J.A., Green, O.M., Brugge, J.S., and Zoller, M.J. 1994. Identification of Src, Fyn, Lyn, PI3K and Abl SH3 domain ligands using phage display libraries. EMBO J. 13:5598‐5604.
   Rickles, R.J., Botfield, M.C., Zhou, X.M., Henry, P.A., Brugge, J.S., and Zoller, M.J. 1995. Phage display selection of ligand residues important for Src homology 3 domain binding specificity. Proc. Natl. Acad. Sci. U.S.A. 92:10909‐10913.
   Riechmann, L. and Holliger, P. 1997. The C‐terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell 90:351‐360.
   Roben, P., Barbas, S.M., Sandoval, L., Lecerf, J.M., Stollar, B.D., Solomon, A., and Silverman, G.J. 1996. Repertoire cloning of lupus anti‐DNA autoantibodies. J. Clin. Invest. 98:2827‐2837.
   Roberts, B.L., Markland, W., Ley, A.C., Kent, R.B., White, D.W., Guterman, S.K., and Ladner, R.C. 1992. Directed evolution of a protein: Selection of potent neutrophil elastase inhibitors displayed on M13 fusion phage. Proc. Natl. Acad. Sci. U.S.A. 89:2429‐2433.
   Roccasecca, R., Folgori, A., Ercole, B.B., Puntoriero, G., Lahm, A., Zucchelli, S., Tafi, R., Pezzanera, M., Galfre, G., Tramontano, A., Mondelli, M.U., Pessi, A., Nicosia, A., Cortese, R., and Meola, A. 2001. Mimotopes of the hyper variable region 1 of the hepatitis C virus induce cross‐reactive antibodies directed against discontinuous epitopes. Mol. Immunol. 38:485‐492.
   Rual, J.F., Hill, D.E., and Vidal, M. 2004. ORFeome projects: Gateway between genomics and omics. Curr. Opin. Chem. Biol. 8:20‐25.
   Saggio, I., Gloaguen, I., and Laufer, R. 1995a. Functional phage display of ciliary neurotrophic factor. Gene 152:35‐39.
   Saggio, I., Gloaguen, I., Poiana, G., and Laufer, R. 1995b. CNTF variants with increased biological potency and receptor selectivity define a functional site of receptor interaction. EMBO J. 14:3045‐3054.
   Salcini, A.E., Confalonieri, S., Doria, M., Santolini, E., Tassi, E., Minenkova, O., Cesareni, G., Pelicci, P.G., and Di Fiore, P.P. 1997. Binding specificity and in vivo targets of the EH domain, a novel protein‐protein interaction module. Genes Dev. 11:2239‐2249.
   Santini, C., Brennan, D., Mennuni, C., Hoess, R.H., Nicosia, A., Cortese, R., and Luzzago, A. 1998. Efficient display of an HCV cDNA expression library as C‐terminal fusion to the capsid protein D of bacteriophage lambda. J. Mol. Biol. 282:125‐135.
   Saphire, E.O., Montero, M., Menendez, A., van Houten, N.E., Irving, M.B., Pantophlet, R., Zwick, M.B., Parren, P.W., Burton, D.R., Scott, J.K., and Wilson, I.A. 2007. Structure of a high‐affinity “mimotope” peptide bound to HIV‐1‐neutralizing antibody b12 explains its inability to elicit gp120 cross‐reactive antibodies. J. Mol. Biol. 369:696‐709.
   Sblattero, D. and Bradbury, A. 2000. Exploiting recombination in single bacteria to make large phage antibody libraries. Nat. Biotechnol. 18:75‐80.
   Sblattero, D., Florian, F., Not, T., Ventura, A., Bradbury, A., and Marzari, R. 2000. Analyzing the peripheral blood antibody repertoire of a celiac disease patient using phage antibody libraries. Hum. Antibodies 9:199‐205.
   Sblattero, D., Florian, F., Azzoni, E., Zyla, T., Park, M., Baldas, V., Not, T., Ventura, A., Bradbury, A., and Marzari, R. 2002. The analysis of the fine specificity of celiac disease antibodies using tissue transglutaminase fragments. Eur. J. Biochem. 269:5175‐5181.
   Sblattero, D., Florian, F., Azzoni, E., Ziberna, F., Tommasini, A., Not, T., Ventura, A., Bradbury, A., and Marzari, R. 2004. One‐step cloning of anti tissue transglutaminase scFv from subjects with celiac disease. J. Autoimmun. 22:65‐72.
   Sblattero, D., Maurano, F., Mazzarella, G., Rossi, M., Auricchio, S., Florian, F., Ziberna, F., Tommasini, A., Not, T., Ventura, A., Bradbury, A., Marzari, R., and Troncone, R. 2005. Characterization of the anti‐tissue transglutaminase antibody response in nonobese diabetic mice. J. Immunol. 174:5830‐5836.
   Scala, G., Chen, X., Liu, W., Telles, J.N., Cohen, O.J., Vaccarezza, M., Igarashi, T., and Fauci, A.S. 1999. Selection of HIV‐specific immunogenic epitopes by screening random peptide libraries with HIV‐1‐positive sera. J. Immunol. 162:6155‐6161.
   Schier, R., Bye, J., Apell, G., McCall, A., Adams, G.P., Malmqvist, M., Weiner, L.M., and Marks, J.D. 1996a. Isolation of high‐affinity monomeric human anti‐c‐erbB‐2 single chain Fv using affinity‐driven selection. J. Mol. Biol. 255:28‐43.
   Schier, R., McCall, A., Adams, G.P., Marshall, K.W., Merritt, H., Yim, M., Crawford, R.S., Weiner, L.M., Marks, C., and Marks, J.D. 1996b. Isolation of picomolar affinity anti‐c‐erbB‐2 single‐chain Fv by molecular evolution of the complementarity determining regions in the center of the antibody binding site. J. Mol. Biol. 263:551‐567.
   Schmitz, R., Baumann, G., and Gram, H. 1996. Catalytic specificity of phosphotyrosine kinases Blk, Lyn, c‐Src and Syk as assessed by phage display. J. Mol. Biol. 260:664‐677.
   Schofield, D.J., Pope, A.R., Clementel, V., Buckell, J., Chapple, S.D., Clarke, K.F., Conquer, J.S., Crofts, A.M., Crowther, S.R., Dyson, M.R., Flack, G., Griffin, G.J., Hooks, Y., Howat, W.J., Kolb‐Kokocinski, A., Kunze, S., Martin, C.D., Maslen, G.L., Mitchell, J.N., O'Sullivan, M., Perera, R.L., Roake, W., Shadbolt, S.P., Vincent, K.J., Warford, A., Wilson, W.E., Xie, J., Young, J.L., and McCafferty, J. 2007. Application of phage display to high throughput antibody generation and characterization. Genome Biol. 8:R254.
   Scott, J.K. and Smith, G.P. 1990. Searching for peptide ligands with an epitope library. Science 249:386‐390.
   Scott, J.K., Loganathan, D., Easley, R.B., Gong, X., and Goldstein, I.J. 1992. A family of concanavalin A‐binding peptides from a hexapeptide epitope library. Proc. Natl. Acad. Sci. U.S.A. 89:5398‐5402.
   Sedlacek, R. and Chen, E. 2005. Screening for protease substrate by polyvalent phage display. Comb. Chem. High Throughput Screen. 8:197‐203.
   Sheets, M.D., Amersdorfer, P., Finnern, R., Sargent, P., Lindqvist, E., Schier, R., Hemmingsen, G., Wong, C., Gerhart, J.C., and Marks, J.D. 1998. Efficient construction of a large nonimmune phage antibody library: the production of high‐affinity human single‐chain antibodies to protein antigens. Proc. Natl. Acad. Sci. U.S.A. 95:6157‐6162.
   Sheinerman, F.B., Al‐Lazikani, B., and Honig, B. 2003. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains. J. Mol. Biol. 334:823‐841.
   Sibille, P., Ternynck, T., Nato, F., Buttin, G., Strosberg, D., and Avrameas, A. 1997. Mimotopes of polyreactive anti‐DNA antibodies identified using phage‐display peptide libraries. Eur. J. Immunol. 27:1221‐1228.
   Sidhu, S.S. and Koide, S. 2007. Phage display for engineering and analyzing protein interaction interfaces. Curr. Opin. Struct. Biol. 17:481‐487.
   Sidhu, S.S., Feld, B.K., and Weiss, G.A. 2007. M13 bacteriophage coat proteins engineered for improved phage display. Methods Mol. Biol. 352:205‐219.
   Siegel, D.L., Chang, T.Y., Russell, S.L., and Bunya, V.Y. 1997. Isolation of cell surface‐specific human monoclonal antibodies using phage display and magnetically‐activated cell sorting: Applications in immunohematology. J. Immunol. Methods 206:73‐85.
   Siva, A.C., Kirkland, R.E., Lin, B., Maruyama, T., McWhirter, J., Yantiri‐Wernimont, F., Bowdish, K.S., and Xin, H. 2008. Selection of anti‐cancer antibodies from combinatorial libraries by whole‐cell panning and stringent subtraction with human blood cells. J. Immunol. Methods 330:109‐119.
   Skerra, A. 2007. Alternative non‐antibody scaffolds for molecular recognition. Curr. Opin. Biotechnol. 18:295‐304.
   Smith, G.P. 1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228:1315‐1317.
   Smith, G.P. 1991. Surface presentation of protein epitopes using bacteriophage expression systems. Curr. Opin. Biotechnol. 2:668‐673.
   Smith, G.P. and Petrenko, V.A. 1997. Phage display. Chem. Rev. 97:391‐410.
   Somers, V., Govarts, C., Hellings, N., Hupperts, R., and Stinissen, P. 2005. Profiling the autoantibody repertoire by serological antigen selection. J. Autoimmun. 25:223‐228.
   Somers, V., Govarts, C., Somers, K., Hupperts, R., Medaer, R., and Stinissen, P. 2008. Autoantibody profiling in multiple sclerosis reveals novel antigenic candidates. J. Immunol. 180:3957‐3963.
   Somers, V.A., Brandwijk, R.J., Joosten, B., Moerkerk, P.T., Arends, J.W., Menheere, P., Pieterse, W.O., Claessen, A., Scheper, R.J., Hoogenboom, H.R., and Hufton, S.E. 2002. A panel of candidate tumor antigens in colorectal cancer revealed by the serological selection of a phage displayed cDNA expression library. J. Immunol. 169:2772‐2780.
   Songyang, Z., Shoelson, S.E., McGlade, J., Olivier, P., Pawson, T., Bustelo, X.R., Barbacid, M., Sabe, H., Hanafusa, H., Yi, T. et al. 1994. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB‐2, HCP, SHC, Syk, and Vav. Mol. Cell Biol. 14:2777‐2785.
   Souriau, C., Fort, P., Roux, P., Hartley, O., Lefranc, M.P., and Weill, M. 1997. A simple luciferase assay for signal transduction activity detection of epidermal growth factor displayed on phage. Nucleic Acids Res. 25:1585‐1590.
   Sparks, A.B., Quilliam, L.A., Thorn, J.M., Der, C.J., and Kay, B.K. 1994. Identification and characterization of Src SH3 ligands from phage‐displayed random peptide libraries. J. Biol. Chem. 269:23853‐23856.
   Sparks, A.B., Hoffman, N.G., McConnell, S.J., Fowlkes, D.M., and Kay, B.K. 1996. Cloning of ligand targets: Systematic isolation of SH3 domain‐containing proteins. Nat. Biotechnol. 14:741‐744.
   Steiner, D., Forrer, P., Stumpp, M.T., and Pluckthun, A. 2006. Signal sequences directing cotranslational translocation expand the range of proteins amenable to phage display. Nat. Biotechnol. 24:823‐831.
   Stemmer, W.P. 1994a. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370:389‐391.
   Stemmer, W.P. 1994b. DNA shuffling by random fragmentation and reassembly: In vitro recombination for molecular evolution. Proc. Natl. Acad. Sci. U.S.A. 91:10747‐10751.
   Stengele, I., Bross, P., Garces, X., Giray, J., and Rasched, I. 1990. Dissection of functional domains in phage fd adsorption protein. Discrimination between attachment and penetration sites. J. Mol. Biol. 212:143‐149.
   Stephen, C.W. and Lane, D.P. 1992. Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J. Mol. Biol. 225:577‐583.
   Stephen, C.W., Helminen, P., and Lane, D.P. 1995. Characterisation of epitopes on human p53 using phage‐displayed peptide libraries: Insights into antibody‐peptide interactions. J. Mol. Biol. 248:58‐78.
   Sternberg, N. and Hoess, R.H. 1995. Display of peptides and proteins on the surface of bacteriophage lambda. Proc. Natl. Acad. Sci. U.S.A. 92:1609‐1613.
   Steward, M.W., Stanley, C.M., and Obeid, O.E. 1995. A mimotope from a solid‐phase peptide library induces a measles virus‐neutralizing and protective antibody response. J. Virol. 69:7668‐7673.
   Stroud, R.M., Serwer, P., and Ross, M.J. 1981. Assembly of bacteriophage T7. Dimensions of the bacteriophage and its capsids. Biophys. J. 36:743‐757.
   Suzuki, H., Takemura, H., Suzuki, M., Sekine, Y., and Kashiwagi, H. 1997. Molecular cloning of anti‐SS‐A/Ro 60‐kDa peptide Fab fragments from infiltrating salivary gland lymphocytes of a patient with Sjogren's syndrome. Biochem. Biophys. Res. Commun. 232:101‐106.
   Szardenings, M. 2003. Phage display of random peptide libraries: Applications, limits, and potential. J. Recept. Signal Transduct. Res. 23:307‐349.
   Szardenings, M., Tornroth, S., Mutulis, F., Muceniece, R., Keinanen, K., Kuusinen, A., and Wikberg, J.E. 1997. Phage display selection on whole cells yields a peptide specific for melanocortin receptor 1. J. Biol. Chem. 272:27943‐27948.
   Takakusagi, Y., Kobayashi, S., and Sugawara, F. 2005. Camptothecin binds to a synthetic peptide identified by a T7 phage display screen. Bioorg. Med. Chem. Lett. 15:4850‐4853.
   Tan, G.H., Yusoff, K., Seow, H.F., and Tan, W.S. 2005. Antigenicity and immunogenicity of the immunodominant region of hepatitis B surface antigen displayed on bacteriophage T7. J. Med. Virol. 77:475‐480.
   Thompson, J., Pope, T., Tung, J.S., Chan, C., Hollis, G., Mark, G., and Johnson, K.S. 1996. Affinity maturation of a high‐affinity human monoclonal antibody against the third hypervariable loop of human immunodeficiency virus: Use of phage display to improve affinity and broaden strain reactivity. J. Mol. Biol. 256:77‐88.
   Tong, A.H., Drees, B., Nardelli, G., Bader, G.D., Brannetti, B., Castagnoli, L., Evangelista, M., Ferracuti, S., Nelson, B., Paoluzi, S., Quondam, M., Zucconi, A., Hogue, C.W., Fields, S., Boone, C., and Cesareni, G. 2002. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science 295:321‐324.
   Toniatti, C., Cabibbo, A., Sporena, E., Salvati, A.L., Cerretani, M., Serafini, S., Lahm, A., Cortese, R., and Ciliberto, G. 1996. Engineering human interleukin‐6 to obtain variants with strongly enhanced bioactivity. EMBO J. 15:2726‐2737.
   Van Ewijk, W., de Kruif, J., Germeraad, W.T., Berendes, P., Ropke, C., Platenburg, P.P., and Logtenberg, T. 1997. Subtractive isolation of phage‐displayed single‐chain antibodies to thymic stromal cells by using intact thymic fragments. Proc. Natl. Acad. Sci. U.S.A. 94:3903‐3908.
   van Meijer, M., Roelofs, Y., Neels, J., Horrevoets, A.J., van Zonneveld, A.J., and Pannekoek, H. 1996. Selective screening of a large phage display library of plasminogen activator inhibitor 1 mutants to localize interaction sites with either thrombin or the variable region 1 of tissue‐type plasminogen activator. J. Biol. Chem. 271:7423‐7428.
   Vaughan, T.J., Williams, A.J., Pritchard, K., Osbourn, J.K., Pope, A.R., Earnshaw, J.C., McCafferty, J., Hodits, R.A., Wilton, J., and Johnson, K.S. 1996. Human antibodies with sub‐nanomolar affinities isolated from a large non‐immunized phage display library. Nat. Biotechnol. 14:309‐314.
   Venkatesh, N., Im, S.H., Balass, M., Fuchs, S., and Katchalski‐Katzir, E. 2000. Prevention of passively transferred experimental autoimmune myasthenia gravis by a phage library‐derived cyclic peptide. Proc. Natl. Acad. Sci. U.S.A. 97:761‐766.
   Walhout, A.J., Temple, G.F., Brasch, M.A., Hartley, J.L., Lorson, M.A., van den Heuvel, S., and Vidal, M. 2000. GATEWAY recombinational cloning: Application to the cloning of large numbers of open reading frames or ORFeomes. Methods Enzymol. 328:575‐592.
   Wang, C.I., Yang, Q., and Craik, C.S. 1995. Isolation of a high affinity inhibitor of urokinase‐type plasminogen activator by phage display of ecotin. J. Biol. Chem. 270:12250‐12256.
   Wang, L.F., Du Plessis, D.H., White, J.R., Hyatt, A.D., and Eaton, B.T. 1995. Use of a gene‐targeted phage display random epitope library to map an antigenic determinant on the bluetongue virus outer capsid protein VP5. J. Immunol. Methods 178:1‐12.
   Weiss, G.A. and Sidhu, S.S. 2000. Design and evolution of artificial M13 coat proteins. J. Mol. Biol. 300:213‐219.
   Williams, B., Atkins, A., Zhang, H., Lu, D., Jimenez, X., Li, H., Wang, M.N., Ludwig, D., Balderes, P., Witte, L., Li, Y., and Zhu, Z. 2005. Cell‐based selection of internalizing fully human antagonistic antibodies directed against FLT3 for suppression of leukemia cell growth. Leukemia 19:1432‐1438.
   Wrighton, N.C., Farrell, F.X., Chang, R., Kashyap, A.K., Barbone, F.P., Mulcahy, L.S., Johnson, D.L., Barrett, R.W., Jolliffe, L.K., and Dower, W.J. 1996. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273:458‐464.
   Wu, J., Tu, C., Yu, X., Zhang, M., Zhang, N., Zhao, M., Nie, W., and Ren, Z. 2007. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity: A powerful immunological approach. J. Virol. Methods 139:50‐60.
   Yang, W.P., Green, K., Pinz‐Sweeney, S., Briones, A.T., Burton, D.R., and Barbas, C.F. 3rd. 1995. CDR walking mutagenesis for the affinity maturation of a potent human anti‐HIV‐1 antibody into the picomolar range. J. Mol. Biol. 254:392‐403.
   Yayon, A., Aviezer, D., Safran, M., Gross, J.L., Heldman, Y., Cabilly, S., Givol, D., and Katchalski‐Katzir, E. 1993. Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage‐epitope library. Proc. Natl. Acad. Sci. U.S.A. 90:10643‐10647.
   Young, A.C., Valadon, P., Casadevall, A., Scharff, M.D., and Sacchettini, J.C. 1997. The three‐dimensional structures of a polysaccharide binding antibody to Cryptococcus neoformans and its complex with a peptide from a phage display library: Implications for the identification of peptide mimotopes. J. Mol. Biol. 274:622‐634.
   Yu, H., Chen, J.K., Feng, S., Dalgarno, D.C., Brauer, A.W., and Schreiber, S.L. 1994. Structural basis for the binding of proline‐rich peptides to SH3 domains. Cell 76:933‐945.
   Yu, M.W., Scott, J.K., Fournier, A., and Talbot, P.J. 2000. Characterization of murine coronavirus neutralization epitopes with phage‐displayed peptides. Virology 271:182‐196.
   Zacchi, P., Sblattero, D., Florian, F., Marzari, R., and Bradbury, A.R. 2003. Selecting open reading frames from DNA. Genome Res. 13:980‐990.
   Zebedee, S.L., Barbas, C.F., Hom, Y., Caothien, R.H., Graff, R., Degraw, J., Pyati, J., LaPolla, R., Burton, D.R., Lerner, R.A., and Thronton, G.B. 1992. Human combinatorial antibody libraries to hepatitis B surface antigen. Proc. Natl. Acad. Sci. U.S.A. 89:3175‐3179.
   Zhang, L., Jacobsson, K., Strom, K., Lindberg, M., and Frykberg, L. 1999. Staphylococcus aureus expresses a cell surface protein that binds both IgG and beta2‐glycoprotein I. Microbiology 145:177‐183.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library