An Overview on the Generation of BAC Transgenic Mice for Neuroscience Research

X. William Yang1, Shiaoching Gong2

1 Department of Psychiatry and Biobehavioral Sciences, Center for Neurobehavioral Genetics, Neuropsychiatric Institute, David Geffen School of Medicine at UCLA, Los Angeles, California, 2 Rockefeller University, New York, New York
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 5.20
DOI:  10.1002/0471142301.ns0520s31
Online Posting Date:  May, 2005
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit provides a comprehensive overview on the generation of transgenic mice using bacterial artificial chromosomes (BACs), and the application of BAC transgenic mice in neuroscience research. In the first section, advantages of the BAC transgenic approach compared to the conventional transgenic approach are summarized. In the second section, important considerations in designing BAC transgenic constructs are outlined. Four commonly used BAC transgenic construct designs are also outlined. Concepts of modifying BACs by homologous recombination in E. coli to introduce a variety of mutations into BACs, and important steps to characterize a modified BAC prior to the generation of transgenic mice are also presented. In the final section, some of the important applications of BAC transgenic mice in neuroscience research, including studying gene expression, gene function, mapping neuronal circuitry, and modeling human diseases, are described.

PDF or HTML at Wiley Online Library

Table of Contents

  • Transgenic Mice: Some General Considerations
  • BAC Transgenic Construct Design
  • BAC Modification by Homologous Recombination in E. coli
  • Characterization of Modified BACs and Preparation of BAC DNA for Microinjections
  • Mouse Strain Considerations
  • Applications of BAC Transgenic Mice in Neuroscience Research
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Aller, M.I., Jones, A., Merlo, D., Paterlini, M., Meyer, A.H., Amtmann, U., Brickley, S., Jolin, H.E., McKenzie, A.N., Monyer, H., Farrant, M., and Wisden, W. 2003. Cerebellar granule cell Cre recombinase expression. Genesis 36:97‐103.
   Antoch, M.P., Song, E.J., Chang, A.M., Vitaterna, M.H., Zhao, Y., Wilsbacher, L.D., Sangoram, A.M., King, D.P., Pinto, L.H., and Takahashi, J.S. 1997. Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell 89:655‐667.
   Berget, S.M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270:2411‐2414.
   Boffelli, D., Nobrega, M.A., and Rubin, E.M. 2004. Comparative genomics at the vertebrate extremes. Nat. Rev. Genet. 5:456‐465.
   Bothe, G.W., Molivar, V.J., Vedder, M.J., and Geistfeld, J.G. 2004. Genetics and behavioral differences among five inbred mouse strains commonly used in the production of transgenic and knockout mice. Genes Brain Behav. 3:149‐157.
   Casanova, E., Fehsenfeld, S., Mantamadiotis, T., Lemberger, T., Greiner, E., Stewart, A.F., and Schutz, G. 2001. A CamKIIalpha iCre BAC allows brain‐specific gene inactiviation. Genesis 31:37‐42.
   Copeland, N.G., Jenkins, N.A., and Court, D.L. 2001. Recombineering: A powerful new tool for mouse functional genomics. Nat. Rev. Genet. 2:769‐779.
   DeFalco, J., Tomishima, M., Liu, H., Zhao, C., Cai, X., Marth, J.D., Enquist, L., and Friedman, J.M. 2001. Virus‐assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291:2608‐2613.
   Gay, P., Le Coq, D., Steinmetz, M., Berkelman, T., and Kado, C.I. 1985. Positive selection procedure for entrapment of insertion sequence elements in gram‐negative bacteria. J. Bacteriol. 164:918‐921.
   Gong, S., Yang, X.W., Li, J., and Heintz, N. 2002. Highly efficient modification of bacterial artificial chromosomes (BACs) using novel shuttle vectors containing the R6Kγ origin of replication. Genome Res. 12:1992‐1998.
   Gong, S., Zheng, C, Goughty, M.L., Losos, K., Didkovsky, N., Schambra, U.B., Nowak, N.J., Joyner, A., Leblanc, G., Hatten, M.E., and Heintz, N. 2003. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917‐925.
   Heintz, N. 2001. BAC to the future: The use of BAC transgenic mice for neuroscience research. Nat. Rev. Neurosci. 2:861‐870.
   Hodgson, J.G., Agopyan, N., Gutekunst, C.A., Leavitt, B.R., LePiane, F., Singaraja, R., Smith, D.J., Bissada, N., McCutcheon, K., Nasir, J., Jamot, L., Li, X.J., Stevens, M.E., Rosemond, E., Roder, J.C., Phillips, A.G., Rubin, E.M., Hersch, S.M., and Hayden, M.R. 1999. A YAC mouse model for Huntington's disease with full‐length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23:181‐192.
   Jessen, J.R., Meng, A., McFarlane, R.J., Paw, B.H., Zon, L.I., Smith, G.R., and Lin, S. 1998. Modification of bacterial artificial chromosomes through chi‐stimulated homologous recombination and its application in zebra fish transgenesis. Proc. Natl. Acad. Sci. U.S.A. 95:5121‐5126.
   Kim, D.G., Kang, H.M., Jang, S.K., and Shin, H.S. 1992. Construction of a bifunctional mRNA in the mouse by using the internal ribosomal entry site of the encephalomyocarditis virus. Mol. Cell Biol. 12:3636‐3643.
   Kozak, M. 1999. Initiation of translation in prokaryotes and eukaryotes. Gene 234:187‐208.
   Lamb, B.T., Sisodia, S.S., Lawler, A.M., Slunt, H.H., Kitt, C.A., Kearns, W.G., Pearson, P.L., Price, D.L., and Gearhart, J.D. 1993. Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat. Genet. 5:22‐30.
   Lee, E.C., Yu, D., Martinez de Velasco, J., Tessarollo, L., Swing, D.A., Court, D.L., Jenkins, N.A., and Copeland, N.G. 2001. A highly efficient Escherichia coli–based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73:56‐65.
   Marra, M.A., Kucaba, T.A., Dietrich, N.L., Green, E.D., Brownstein, B., Wilson, R.K., McDonald, K.M., Hillier, L.W., McPherson, J.D., and Waterston, R.H. 1997. High throughput fingerprint analysis of large‐insert clones. Genome Res. 7:1072‐1084.
   Metcalf, W.W., Jiang, W., Daniels, L.L., Kim, S.K., Haldimann, A., and Wanner, B.L. 1996. Conditionally replicative and conjugative plasmids carrying lacZ alpha cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35:1‐13.
   Nobrega, M.A., Ovcharenko, I., Afzal, V., and Rubin, E.M. 2003. Scanning human gene deserts for long‐range enhancers. Science 302:413.
   Ohyama, T. and Groves, A.K. 2004. Generation of Pax2‐Cre mice by modification of a Pax2 bacteria artificial chromosome. Genesis 38:195‐199.
   Roseberry, A.G., Liu, H., Jackson, A.C., Cai, X., and Griedman, J.M. 2004. Neuropeptide Y–mediated inhibition of proopiomelanocortin neurons in the arcuate nucleus shows enhanced desensitization in ob/ob mice. Neuron 41:711‐722.
   Shizuya, H., Birren, B., Kim, U.J., Mancino, V., Slepak, T., Tachiiri, Y., and Simon, M. 1992. Cloning and stable maintenance of 300‐kilobase‐pair fragments of human DNA in Echerichia coli using an F‐factor based vector. Proc. Natl. Acad. Sci. U.S.A 89:8794‐8797.
   Sopher, B.L., Thomas, P.S. Jr, LaFevre‐Bernt, M.A., Holm, I.E., Wilke, S.A., Ware, C.B., Jin, L.W., Libby, R.T., Ellerby, L.M., and La Spada, A.R. 2004. Androgen receptor YAC transgenic mice recapitulate SBMA motor neuronopathy and implicate VEGF164 in the motor neuron degeneration. Neuron 41:687‐699.
   Valenzuela, D.M., Murphy, A.J., Frendewey, D., Gale, N.W., Economides, A.N., Auerbach, W., Poueymirous, W.T., Adams, N.C., Rojas, J., Yasenchak, J., Chernomorsky, R., Boucher, M., Elsasser, A.L., Esau, L., Zheng, J., Griffiths, J.A., Wang, X., Su, H., Xue, Y., Dominguez, M.G., Noguera, I., Torres, R., Macdonald, L.E., Stewart, A.F., DeChiara, T.M., and Yancopoulos, G.D. 2003. High‐throughput engineering of the mouse genome coupled with high‐resolution expression analysis. Nat. Biotechnol. 6:652‐659.
   Yang, X.W., Model, P., and Heintz, N. 1997. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15:859‐865.
   Yang, X.W., Wynder, C., Doughty, M.L., and Heintz, N. 1999. BAC‐mediated gene‐dosage analysis reveals a role for Zipro1 (Ru49/Zfp38) in progenitor cell proliferation in cerebellum and skin. Nat. Genet. 22:327‐335.
   Yu, W., Misulovin, Z., Suh, H., Hardy, R.R., Jankovic, M., Yannoutsos, N., and Nussenzweig, M.C. 1999. Coordinate regulation of RAG1 and RAG2 by cell type‐specific DNA elements 5′ of RAG2. Science 285:1080‐1084.
   Yoshihara, Y., Mizuno, T., Nakahira, M., Kawasaki, M., Watanabe, Y., Kagamiyama, H., Jishage, K., Ueda, O., Suzuki, H., Tabuchi, K., Sawamoto, K., Okano., Noda, T., and Mori, K. 1999. A genetics approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22:33‐41.
   Zhang, Y., Buchholz, F., Muyrers, J.P., and Stewart, A.F. 1998. A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20:123‐128.
   Zuo, J., Treadaway, J., Buckner, T.W., and Fritzsch, B. 1999. Visualization of α9 acetylcholine receptor expression in hair cells of transgenic mice containing a modified bacterial artificial chromosome. Proc. Natl. Acad Sci. U.S.A. 96:14100‐14105.
PDF or HTML at Wiley Online Library