Bioluminescence Resonance Energy Transfer Assay to Characterize Gi‐Like G Protein Subtype‐Dependent Functional Selectivity

Hideaki Yano1, Marta Sánchez‐Soto1, Sergi Ferré1

1 Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, Maryland
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 5.33
DOI:  10.1002/cpns.38
Online Posting Date:  October, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

G protein–coupled receptors (GPCRs) comprise the single most targeted protein class in pharmacology. G protein signaling transduces extracellular stimuli such as neurotransmitters into cellular responses. Although preference for a specific GPCR among different G protein families (e.g., Gs‐, Gi‐, or Gq‐like proteins) is often well studied, preference for a specific G protein subtype (e.g., Gi1, Gi2, Gi3, Go1, and Go2) has received little attention. Due to tissue expression differences and potentially exploitable functional differences, G protein subtype‐dependent functional selectivity is an attractive framework to expand GPCR drug development. Herein we present a bioluminescence resonance energy transfer (BRET)‐based method to characterize functional selectivity among Gi‐like protein subtypes. © 2017 by John Wiley & Sons, Inc.

Keywords: GPCR; G protein subtype; BRET; catecholamine; functional selectivity

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: G Protein Activation BRET Assay
  • Support Protocol 1: Optimization of Transfection Conditions
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: G Protein Activation BRET Assay

  Materials
  • HEK293T cells (ATCC #CRL‐3216)
  • HEK293T culture medium: supplemented DMEM (see recipe)
  • Non‐supplemented DMEM (e.g., Gibco, cat. no. 11960044)
  • Dulbecco's phosphate‐buffered saline (DBPS; e.g., Gibco, cat. no. 14130144)
  • Trypsin/EDTA solution (e.g., Gibco, cat. no. 25300054)
  • Mammalian expression plasmids encoding:
    • Unfused receptor of choice (e.g., pcDNA3.1‐α 2A)
    • Donor‐fused Gαi‐like subunit (e.g., pcDNA3.1‐Gαi1‐Rluc8)
    • Unfused Gβ subunit (e.g., pcDNA3.1‐Gβ1)
    • Acceptor‐fused Gγ subunit (e.g., pcDNA3.1‐Gγ2‐Venus)
  • 1 µg/µl polyethylenimine (PEI; see recipe)
  • Agonist and antagonist appropriate for the receptor of interest
  • Dimethyl sulfoxide (DMSO)
  • DPBS BRET buffer (see recipe)
  • 5 mM coelenterazine H (see recipe)
  • 10‐cm tissue culture plates (e.g., USA Scientific, cat. no. CC7682‐3614)
  • 15‐ml conical tubes
  • Centrifuge
  • Hemocytometer
  • Microscope
  • Cell culture incubator, 37°C, 5% CO 2
  • 1.5‐ml microcentrifuge tubes
  • Vortex
  • Compound plate (for agonist): 96‐well clear U‐bottom plates (e.g., Greiner Bio‐One, cat. no. 650101)
  • Compound plate (for antagonist): 96‐well clear V‐bottom plates (e.g., Greiner Bio‐One, cat. no. 651101)
  • BRET assay plate: white 96‐well flat bottom plates (e.g., Greiner Bio‐One, cat. no. 655075)
  • Fluorescence plate: black 96‐well flat bottom plates (e.g., Greiner Bio‐One, cat. no. 655076)
  • Manual repeater pipette (e.g., Eppendorf, cat. no. EPR‐1000R)
  • 12‐channel multichannel pipette, 10 to 100 µl (e.g., USA scientific, cat. no. 7112‐1100) or 30 to 300 µl (e.g., USA scientific, cat. no. 7112‐3300)
  • Table top centrifuge with 96‐well plate adaptor (e.g., Thermo, Sorvall Legend XTR)
  • Pipette basin (USA scientific, cat. no. 2330‐2220)
  • Plate reader for luminescence, fluorescence, and BRET (e.g., Berthold Technologies Mithras LB 940)
  • Software for data analysis (e.g., Microsoft Excel and GraphPad Prism)
NOTE: All mammalian tissue culture must be conducted using aseptic techniques in a laminar flow hood. Cells should be maintained in a humidified incubator at 37°C with 5% CO 2.NOTE: This protocol entails the transfection of five 10‐cm plates with α 2A adrenergic receptor and one of the Gαi/o subtypes for each plate. For analysis of how to compare different receptors and Gαi/o protein subtypes, see Critical Parameters and Troubleshooting.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Arnsten, A. F. (2011). Catecholamine influences on dorsolateral prefrontal cortical networks. Biological Psychiatry, 69, e89–99. doi: 10.1016/j.biopsych.2011.01.027.
  Atwood, B. K., Lopez, J., Wager‐Miller, J., Mackie, K., & Straiker, A. (2011). Expression of G protein‐coupled receptors and related proteins in HEK293, AtT20, BV2, and N18 cell lines as revealed by microarray analysis. BMC Genomics, 12, 1–14. doi: 10.1186/1471‐2164‐12‐14.
  Beaulieu, J‐M., & Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63, 182–217. doi: 10.1124/pr.110.002642.
  Bonifazi, A., Yano, H., Ellenberger, M. P., Muller, L., Kumar, V., Zou, M. F., … Newman, A. H. (2017). Novel bivalent ligands based on the sumanirole pharmacophore reveal dopamine D2 receptor (D2R) biased agonism. Journal of Medicinal Chemistry, 60, 2890–2907. doi: 10.1021/acs.jmedchem.6b01875.
  Gales, C., Rebois, R. V., Hogue, M., Trieu, P., Breit, A., Hebert, T. E., & Bouvier, M. (2005). Real‐time monitoring of receptor and G‐protein interactions in living cells. Nature Methods, 2, 177–184. doi: 10.1038/nmeth743.
  Gales, C., Van Durm, J. J. J., Schaak, S., Pontier, S., Percherancier, Y., Audet, M., … Bouvier, M. (2006). Probing the activation‐promoted structural rearrangements in preassembled receptor‐G protein complexes. Nature Structural & Molecular Biology, 13, 778–786. doi: 10.1038/nsmb1134.
  Herenbrink, C. K., Sykes, D. A., Donthamsetti, P., Canals, M., Coudrat, T., Shonberg, J., … Lane, J. R. (2016). The role of kinetic context in apparent biased agonism at GPCRs. Nature Communications, 7, 10842. doi: 10.1038/ncomms10842.
  Hervé, D. (2011). Identification of a specific assembly of the G protein Golf as a critical and regulated module of dopamine and adenosine‐activated cAMP pathways in the striatum. Frontiers in Neuroanatomy, 5, 48. doi: 10.3389/fnana.2011.00048.
  Hille, B. (1994). Modulation of ion‐channel function by G‐protein‐coupled receptors. Trends in Neurosciences, 17, 531–536. doi: 10.1016/0166‐2236(94)90157‐0.
  Hiller, C., Kling, R. C., Heinemann, F. W., Meyer, K., Hubner, H., & Gmeiner, P. (2013). Functionally selective dopamine D2/D3 receptor agonists comprising an enyne moiety. Journal of Medicinal Chemistry, 56, 5130–5141. doi: 10.1021/jm400520c.
  Jiang, M., Spicher, K., Boulay, G., Wang, Y., & Birnbaumer, L. (2001). Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proceedings of the National Academy of Sciences, 98, 3577–3582. doi: 10.1073/pnas.051632598.
  Kenakin, T. (2011). Functional selectivity and biased receptor signaling. Journal of Pharmacology and Experimental Therapeutics, 336, 296–302. doi: 10.1124/jpet.110.173948.
  Marullo, S., & Bouvier, M. (2007). Resonance energy transfer approaches in molecular pharmacology and beyond. Trends in Pharmacological Sciences, 28, 362–365. doi: 10.1016/j.tips.2007.06.007.
  Moller, D., Kling, R. C., Skultety, M., Leuner, K., Hubner, H., & Gmeiner, P. (2014). Functionally selective dopamine D(2), D(3) receptor partial agonists. Journal of Medicinal Chemistry, 57, 4861–4875. doi: 10.1021/jm5004039.
  Robinson, S. W., & Caron, M. G. (1997). Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor. Molecular Pharmacology, 52, 508–514. doi: 10.1124/mol.52.3.508.
  Sánchez‐Soto, M., Bonifazi, A., Cai, N. S., Ellenberger, M. P., Newman, A. H., Ferré, S., & Yano, H. (2016). Evidence for noncanonical neurotransmitter activation: Norepinephrine as a dopamine D2‐like receptor agonist. Molecular Pharmacology, 89, 457–466. doi: 10.1124/mol.115.101808.
  Wettschureck, N., & Offermanns, S. (2005). Mammalian G proteins and their cell type specific functions. Physiological Reviews, 85, 1159–1204. doi: 10.1152/physrev.00003.2005.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library