Whole‐Cell Voltage Clamp Recording

Meyer B. Jackson1

1 University of Wisconsin Medical School, Madison, Wisconsin
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 6.6
DOI:  10.1002/0471142301.ns0606s00
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes the use of whole‐cell voltage clamping to study voltage‐gated channels. Stepwise changes in voltage produced by this technique cause channels to interconvert between different states, and these transitions are monitored as changes in membrane current. The time course of this redistribution of states contains a great deal of information about the mechanism of channel gating. Furthermore, the voltage clamp can be used to activate different populations of channels selectively. In this way, a specific channel targeted by biological or pharmacological manipulations can often be identified and studied in detail. This technique is also readily adapted to the study of ligand‐gated channels, synaptic potentials, and exocytosis.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Patch‐Clamp Technique Setup
  • Basic Protocol 2: Data Acquisition and Pulse Sequences
  • Basic Protocol 3: Analysis of Patch Clamp Data
  • Commentary
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Patch‐Clamp Technique Setup

  Materials
  • Cells or tissue slice (see Chapter 3; and units 6.4 & 6.5)
  • Patch electrode buffer (dependent upon experimental design; see ; see )
  • Bathing solution (dependent upon experimental design; see ; see )
  • Coated patch electrodes (see and unit 6.3)
  • Electrophysiology setup (see and unit 6.1 & )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Adams, M.E. and Swanson, G. 1996. Neurotoxins, 2nd ed. Supplement to Trends in Neuroscience.
   Armstrong, C.M. and Gilly, W.F. 1992. Access resistance and space clamp problems associated with whole‐cell patch clamping. Methods Enzymol. 207:100‐122.
   Banks, M.I., Haberly, L.B., and Jackson, M.B. 1996. Layer‐specific properties of the transient K‐current (Ia) in piriform cortex. J. Neurosci. 16:3862‐3876.
   Bean, B.P. 1992. Whole‐cell recording of calcium channel currents. Methods Enzymol. 207:181‐193.
   Bielefeldt, K., Rotter, J.L., and Jackson, M.B. 1992. Three potassium channels in rat posterior pituitary nerve endings. J. Physiol. 458:41‐67.
   Carbone, E. and Lux, H.D. 1986. Sodium channels in cultured dorsal root ganglion neurons. Eur. J. Biophys. 13:259‐271.
   Carbone, E. and Lux, H.D. 1987. Kinetics and selectivity of a low‐voltage‐activated calcium current in chick and rat sensory neurones. J. Physiol. 386:547‐570.
   Cole, K.S. 1949. Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 3:253‐258.
   Colquhoun, D. and Hawkes, A.G. 1977. Relaxation and fluctuation of membrane currents that flow through drug operated ion channels. Proc. R. Soc. Lond. B Biol. Sci. 199:231‐262.
   Cota, G. 1986. Calcium currents in pars intermedia cells of the rat pituitary gland. J. Gen. Physiol. 88:83‐105.
   Cota, G. and Armstrong, C.M. 1988. Potassium channel “inactivation” induced by soft‐glass patch pipettes. Biophys. J. 53:107‐109.
   Cota, G. and Armstrong, C.M. 1992. Analysis of sodium channel tail currents. Methods Enzymol. 207:806‐816.
   De Schutter, E. 1989. Computer software for development and simulation of compartmental models of neurons. Comput. Biol. Med. 19:71‐81.
   Fenwick, E.M., Marty, A., and Neher, E. 1982. Sodium and calcium channels in bovine chromaffin cells. J. Physiol. 331:599‐636.
   Finkel, A.S. and Gage, P.W. 1985. Conventional voltage clamping with two intracellular microelectrodes. In Voltage and Patch Clamping with Microelectrodes (T.G. Smith, H. Lecar, S.J. Redman, and P.W. Gage, eds.) pp. 47‐94. American Physiological Society, Bethesda.
   Forscher, P. and Oxford, G.S. 1985. Modulation of calcium channels by norepinephrine in internally perfused dialyzed avian sensory neurons. J. Gen. Physiol. 85:743‐763.
   Fox, A.P., Nowycky, M.C., and Tsien, R.W. 1987. Kinetic and pharmacologic properties distinguishing three types of calcium currents in chick sensory neurones. J. Physiol. 394:149‐172.
   Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. 1981. Improved patch clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches. Pfluegers Arch. Eur. J. Physiol. 391:85‐100.
   Heinemann, S.H. 1995. Guide to data acquisition and analysis. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 53‐91. Plenum, New York.
   Herrington, J. and Bookman, R.J. 1994. Pulse Control V4.3: Igor XOPS for Patch Clamp Data Acquisition. University of Miami Press, Miami.
   Hille, B. 1992. Ion Channels of Excitable Membranes. Sinauer Associates, Sunderland, Mass.
   Hodgkin, A.L. and Huxley, A.F. 1952a. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. 116:449‐472.
   Hodgkin, A.L. and Huxley, A.F. 1952b. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117:500‐544.
   Hoshi, T., Rothlein, J., and Smith, S.J. 1984. Facilitation of Ca2+‐channel currents in bovine adrenal chromaffin cells. Proc. Natl. Acad. Sci. U.S.A. 81:5871‐5875.
   Howe, J.R. and Ritchie, J.M. 1992. Multiple kinetic components of sodium channel inactivation in rabbit Schwann cells. J. Physiol. 455:529‐66.
   Huguenard, J.R. and Prince, D.A. 1992. A novel T‐type current underlies prolonged Ca2+‐dependent burst firing in GABAergic neurons of rat thalamic reticular nucleus. J. Neurosci. 12:3804‐3817.
   Jackson, M.B. 1992. Cable analysis with the whole‐cell patch clamp: Theory and experiment. Biophys. J. 61:756‐766.
   Jackson, M.B. 1993. Passive current flow and morphology in the nerve terminal arborizations of the posterior pituitary. J. Neurophysiol. 69:692‐702.
   Jackson, M.B. and Zhang, S.J. 1995. Action potential propagation and propagation block by GABA in rat posterior pituitary nerve terminals. J. Physiol. 483:597‐611.
   Johnston, D. and Brown, T.H. 1983. Interpretation of voltage clamp measurements in hippocampal neurons. J. Neurophysiol. 50:464‐486.
   Jones, S.W. 1987. Sodium currents in dissociated bull‐frog sympathetic neurones. J. Physiol. 389:605‐627.
   Jones, S.W. 1990. Whole‐cell and microelectrode voltage clamp. In Neuromethods, Vol. 14 (A.A. Boulton, G.B. Baker, and C.H. Vanderwolf, eds.) pp. 143‐192. Humana Press, Totowa, NJ.
   Jones, S.W. and Marks, T.N. 1989. Calcium currents in bullfrog sympathetic neurons. I. Activation kinetics and pharmacology. J. Gen. Physiol. 94:151‐167.
   Kay, A.R. and Wong, R.K.S. 1987. Calcium current activation kinetics in isolated pyramidal neurones of the CA1 region of the mature guinea‐pig hippocampus. J. Physiol. 392:603‐616.
   Kostyuk, P.G. 1988. Cytoplasmic modulation of ion channel functioning in the neuronal membrane. In Calcium and Ion Channel Modulation (A.D. Grinnell, D. Armstrong, and M.B. Jackson, eds.) pp. 187‐195. Plenum, New York.
   Major, G., Evan, J.D., and Jack, J.B. 1993. Solutions for transients in arbitrarily branching cables: I. Voltage recording with a somatic shunt. Biophys. J. 65:423‐449.
   Malécot, C.O., Feindt, P., and Trautwein, W. 1988. Intracellular N‐methyl‐D‐glucamine modifies the kinetics of calcium current in guinea pig ventricular heart cells. Pfluegers Arch. Eur. J. Physiol. 411:235‐242.
   Marmont, G. 1949. Studies on the axon membrane: A new method. J. Cell. Comp. Physiol. 34:351‐382.
   Marty, A. and Neher, E. 1985. Potassium channels in cultured bovine adrenal chromaffin cells. J. Physiol. 367:117‐141.
   Marty, A. and Neher, E. 1995. Tight‐seal whole‐cell recording. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 31‐51. Plenum, New York.
   Monyer, H. and Jonas, P. 1995. Polymerase chain reaction analysis of ion channel expression in single neurons of brain slices. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 357‐373. Plenum, New York.
   Neher, E. 1992. Correcting for liquid junction potentials in patch clamp experiments. Methods Enzymol. 207:123‐131.
   Numann, R.E., Wadman, W.J., and Wong, R.K. 1987. Outward currents of single hippocampal cells obtained from the adult guinea‐pig. J. Physiol. 393:331‐353.
   Oxford, G.S. 1981. Some kinetic and steady‐state properties of sodium channels after removal of inactivation. J. Gen. Physiol. 77:1‐22.
   Oxford, G.S. and Wagoner, P.K. 1989. The inactivating K+ current in GH3 pituitary cells and its modification by chemical reagents. J. Physiol. 410:587‐612.
   Pusch, M. and Neher, E. 1988. Rates of diffusional exchange between small cells and a measuring patch pipette. Pfluegers Arch Eur. J. Physiol. 411:204‐211.
   Rall, W. 1959. Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1:491‐527.
   Rall, W. 1969. Time constants and electrotonic length of membrane cylinders and neurons. Biophys. J. 9:1483‐1508.
   Rall, W. 1977. Core conductor theory and cable properties of neurons. In Handbook of Physiology. The Nervous System. Cellular Biology of Neurons (J.M. Brookhart and V.B. Mountcastle, eds.) pp. 39‐97. American Physiological Society, Bethesda.
   Rall, W. and Segev, I. 1985. Space clamp problems when voltage clamping branched neurons with intracellular microelectrodes. In Voltage and Patch Clamping with Microelectrodes (T.G. Smith, H. Lecar, S.J. Redman, and P.W. Gage) pp. 191‐215. American Physiological Society, Bethesda.
   Sakmann, B. and Neher, E. 1995a. Geometric parameters of pipettes and membrane patches. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 637‐650. Plenum, New York.
   Sakmann, B. and Neher, E. 1995b. Single‐Channel Recording. Plenum, New York.
   Schoppa, N.E., McCormack, K., Tanouye, M.A., and Sigworth, F.J. 1992. The size of gating charge in wild type and mutant Shaker potassium channels. Science 255:1712‐1715.
   Sigworth, F.J. 1995. Electronic design of the patch clamp. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 95‐127. Plenum, New York.
   Smith, T.G., Lecar, H., Redman, S.J., and Gage, P.W. (eds). 1985. Voltage and Patch Clamping with Microelectrodes. American Physiological Society, Bethesda.
   Spruston, N., Jaffe, D.B., and Johnston, D. 1994. Dendritic attenuation of synaptic potentials and currents: The role of passive membrane properties. Trends Neurosci. 17:161‐166.
   Swandulla, D. and Armstrong, C.M. 1988. Fast‐deactivating calcium channels in chick sensory neurons. J. Gen. Physiol. 92:197‐218.
   Swandulla, D. and Chow, R.H. 1992. Recording solutions for isolating specific ionic channel currents. In Practical Electrophysiological Methods. (H. Kettenmann and R. Grantyn, eds.) pp. 164‐168. Wiley‐Liss, New York.
   Traub, R.D. and Miles, R. 1991. Neuronal Networks of the Hippocampus. Cambridge University Press, New York.
   Yamaguchi, K., Nakajima, Y., Nakajima, S., and Stanfield, P.R. 1990. Modulation of inwardly rectifying channels by substance P in cholinergic neurones from rat brain in culture. J. Physiol. 426:499‐520.
   Zagotta, W.N. and Aldrich, R.W. 1990. Voltage‐dependent gating of Shaker A‐type potassium channels in Drosophila muscle. J. Gen. Physiol. 95:29‐60.
   Zhang, H.G., Ffrench‐Constant, R.H., and Jackson, M.B. 1994. A unique amino acid of the Drosophila GABA receptor influences drug sensitivity by two mechanisms. J. Physiol. 479:65‐75.
Internet Resources
  http://chroma.med.miami.edu/cap
  Site to download Pulse Control (see , section on Computer, interface, and software).
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library