Single‐Channel Recording

Meyer B. Jackson1

1 University of Wisconsin Medical School, Madison, Wisconsin
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 6.8
DOI:  10.1002/0471142301.ns0608s02
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit provides detailed descriptions for the steps of patch excision, data acquisition, and data analysis, and elaborates upon the relevant issues discussed in other units from Chapter 3. It includes discussions of the instrumentation for single‐channel recording and the key concepts necessary for the interpretation of single‐channel data.

PDF or HTML at Wiley Online Library

Table of Contents

  • Strategic Planning
  • Basic Protocol 1: Patch Formation for Single‐Channel Recording
  • Basic Protocol 2: Data Acquisition and Pulse Sequences
  • Basic Protocol 3: Analysis of Single‐Channel Recording Data
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Patch Formation for Single‐Channel Recording

  • Cells or tissue slice (see Chapter 3 and units 6.4 & 6.5)
  • Patch electrode solution (see )
  • Physiological and/or experimental bathing solution (see )
  • Coated patch electrode (see and units 6.3 & 6.6)
  • Electrophysiology setup (see and units 6.1, 6.2 & 6.6)
  • Additional materials and equipment for whole‐cell voltage clamp recording (unit 6.6)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Armstrong, D. and Eckert, R.O. 1987. Voltage‐activated calcium channels that must be phosphorylated to respond to membrane potential. Proc. Natl. Acad. Sci. U.S.A. 84:2518‐2522.
   Ball, F.G. and Sansom, M.S.P. 1989. Ion‐channel gating mechanisms: Model identification and parameter estimation from single channel recordings. Proc. R. Soc. Lond. B. Biol. Soc. 236:385‐416.
   Benndorf, K. 1995. Low‐noise recording. In Single‐Channel Recording. B. Sakmann and E. Neher, eds.) pp. 129‐153. Plenum, New York.
   Bezanilla, F. 1985. A high capacity data recording device based on a digital audio processor and a video cassette recorder. Biophys. J. 47:437‐441.
   Bielefeldt, K. and Jackson, M.B. 1994. Phosphorylation and dephosphorylation modulate a Ca2+‐activated K+ channel in rat peptidergic nerve terminals. J. Physiol. (Lond.) 475:241‐254.
   Blatz, A.L. and Magleby, K.L. 1986. Correcting single channel data for missed events. Biophys. J. 49:967‐980.
   Blatz, A.L. and Magleby, K.L. 1989. Adjacent interval analysis distinguishes among gating mechanisms for the fast chloride channel from rat skeletal muscle. J. Physiol. (Lond.) 410:561‐585
   Chung, S.H., Moore, J.B., Xia, L., Premkumar, L.S., and Gage, P.W. 1990. Characterization of single channel currents using digital signal processing techniques based on Hidden Markov Models. Philos. Trans. R. Soc. Lond. 329:265‐285.
   Colquhoun, D. and Hawkes, A.G. 1981. On the stochastic properties of single ion channels. Proc. R. Soc. Lond. B. Biol. Sci. 211:205‐235.
   Colquhoun, D. and Hawkes, A.G. 1982. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos. Trans. R. Soc. Lond. B. 300:1‐59.
   Colquhoun, D. and Hawkes, A.G. 1995a. The principles of the stochastic interpretation of ion‐channel mechanisms. In Single‐Channel Recording (B. Sakmann and E. Neher,) eds. pp. 397‐482. Plenum, New York.
   Colquhoun, D. and Hawkes, A.G. 1995b. A Q‐matrix cookbook. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 589‐633. Plenum, New York.
   Colquhoun, D. and Sigworth, F. 1995. Fitting and statistical analysis of single channel records. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 483‐587. Plenum, New York.
   Cox, D.R. and Miller, H.D. 1965. The Theory of Stochastic Processes. Chapman & Hall, London.
   Crouzy, S.C. and Sigworth, F.J. 1990. Yet another approach to the dwell time omission problem of single‐channel analysis. Biophys. J. 58:731‐743.
   Fredkin, D.R. and Rice, J.A. 1992. Maximum likelihood estimation and identification directly from single‐channel recordings. Proc. R. Soc. Lond. B. Biol. Sci. 249:125‐132.
   Fredkin, D.R., Montal, M., and Rice, J.A. 1985. Identification of aggregated Markovian models: Application to the nicotinic acetylcholine receptor. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer(L.M. Le Carn and R.A. Olshen, eds.) pp. 269‐289. Wadsworth Press, Monterey, Calif.
   French, R.J. and Wonderlin, W.F. 1992. Software for acquisition and analysis of ion channel data: Choices, tasks, and strategies. Methods Enzymol. 207:711‐728.
   Gibb, A.J. and Colquhoun, D. 1992. Activation of NMDA receptors by L‐glutamate in cells dissociated from adult rabbit hippocampus. J. Physiol. (Lond.) 456:143‐179.
   Hamill, O.P., Marty, A., Neher, E., Sakmann, B., and Sigworth, F.J. 1981. Improved patch‐clamp techniques for high‐resolution current recording from cells and cell‐free membrane patches. Pflügers Arch. Eur. J. Physiol. 391:85‐100.
   Heinemann, S. and Sigworth, F. 1993. Fluctuations of ionic currents and ion channel proteins. In Thermodynamics of Membrane Receptors and Channels (M.B. Jackson, ed.) pp. 407‐422. CRC Press, Boca Raton, Fla.
   Horn, R. 1987. Statistical methods for model discrimination. Applications for gating kinetics and permeation of the acetylcholine receptor channel. Biophys. J. 51:255‐263.
   Horn, R. 1991. Estimating the number of channels in patch recordings. Biophys. J. 60:433‐439.
   Horn, R. and Lange, K. 1983. Estimating kinetic constants from single channel data. Biophys. J. 43:207‐223.
   Horn, R. and Patlak, J. 1980. Single channel currents from excised patches of muscle membrane. Proc. Natl. Acad. Sci. U.S.A. 77:6930‐6934.
   Horn, R. and Vandenberg, C.A. 1984. Statistical properties of single sodium channels. J. Gen. Physiol. 84:505‐534
   Jackson, M.B. 1985. The stochastic behavior of a many channel membrane system. Biophys. J. 47:129‐137
   Jackson, M.B. 1988. Dependence of acetylcholine receptor channel kinetics on agonist concentration in cultured mouse muscle fibres. J. Physiol. (Lond.) 397:555‐583
   Jackson, M.B. 1992. Stationary single channel analysis. Methods Enzymol. 207:729‐746
   Jackson, M.B. 1993. Thermodynamics of Membrane Receptors and Channels. CRC Press, Boca Raton, Fla.
   Jackson, M.B. 1994. Single channel currents in the nicotinic receptor: A direct demonstration of allosteric transitions. Trends Biochem. Sci. 19:396‐399
   Jackson, M.B. 1997. Inversion of Markov processes to determine rate constants from single‐channel data. Biophys. J. 73:1382‐1394
   Jackson, M.B. and Lecar, H. 1979. Single postsynaptic channel currents in tissue cultured muscle. Nature 282:863‐864
   Jackson, M.B., Wong, B.M., Morris, C.E., Lecar, H., and Christian, C.N. 1983. Successive openings of the same acetylcholine receptor channel are correlated in open time. Biophys. J. 42:109‐114
   Johnston, D. and Wu, S.M.‐S. 1995. Foundations of Cellular Neurophysiology. MIT Press, Cambridge, Mass.
   Jones, S.W. 1990. Whole‐cell and microelectrode voltage clamp. In Neuromethods, Vol 14 (A.A. Boulton, G.B. Baker, and C.H. Vanderwolf, eds.) pp. 143‐192. Humana Press, Totowa, N.J.
   Kourie, J.I., Laver, D.R., Junankar, P.R., Gage, P.W., and Dulhunty, A.F. 1996. Characteristics of two types of chloride channel in sarcoplasmic reticulum from rabbit skeletal muscle. Biophys. J. 70:202‐221.
   Laver, D.R. 1992. Divalent cation block and competition between divalent and monovalent cations in the large‐conductance K+ channel from Chara australis. J. Gen. Physiol. 100:269‐300.
   Levis, R.A. and Rae, J.L. 1993. The use of quartz patch pipettes for low noise single channel recording. Biophys. J. 65:1666‐1677.
   Magleby, K.L. 1992. Preventing artifacts and reducing errors in single‐channel analysis. Methods Enzymol. 207:763‐791.
   Magleby, K.L. and Song, L. 1992. Dependency plots suggest the kinetic structure of ion channels Proc. R. Soc. Lond. B Biol. Sci. 249:133‐142.
   McManus, O.B., Blatz, A.L., and Magleby, K.L. 1987. Sampling, log binning, fitting, and plotting durations of open and shut intervals from single channels and the effects of noise. Pflügers Arch. Eur. J. Physiol. 410:530‐553.
   Neher, E. 1983. The charge carried by single‐channel currents of rat cultured muscle cells in the presence of local anaesthetics. J. Physiol. (Lond.) 339:663‐678.
   Neher, E. and Sakmann, B. 1976. Single channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799‐802.
   Neher, E. and Steinbach, J.H. 1978. Local anesthetics transiently block currents through single acetylcholine‐receptor channels. J. Physiol. (Lond.) 277:153‐176.
   Nelson, D.J. and Sachs, F. 1979. Single ion channels observed in tissue‐cultured muscle. Nature 282:861‐863.
   Patlak, J.B. 1986. Sodium channel subconductance levels measured with a new variance‐mean analysis J. Gen. Physiol. 92:413‐430.
   Patlak, J.B. 1993. Measuring kinetics of complex single ion channel data using mean‐variance histograms. Biophys. J. 65:29‐42.
   Patlak, J.B., Gration, K.A.F., and Usherwood, P.N.R. 1979. Single glutamate‐activated channels in locust muscle. Nature 278:643‐645.
   Qin, F., Auerbach, A., and Sachs, F. 1996. Estimating single‐channel kinetic parameters from idealized patch‐clamp data containing missed events. Biophys. J. 70:264‐280.
   Roux, B. and Sauvé, R. 1985. A general solution to the time interval omission problem applied to single channel analysis. Biophys. J. 48:149‐158.
   Rudy, B. and Iverson, L.E. 1992. Ion Channels. Methods Enzymol., Vol. 207.
   Sachs, F. 1983. Automated analysis of single channel records. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 265‐286. Plenum, New York.
   Sakmann, B. and Neher, E. 1995. Single‐Channel Recording. Plenum Press, New York.
   Sigworth, F.J. 1995. Electronic design of the patch clamp. In Single‐Channel Recording (B. Sakmann and E. Neher, eds.) pp. 95‐127. Plenum, New York.
   Sigworth, F.J. and Neher, E. 1980. Single sodium channel currents observed in cultured rat muscle cells. Nature 287:447‐449.
   Sigworth, F.J. and Sine, S.M. 1987. Data transformations for improved display and fitting of single‐channel dwell time histograms. Biophys. J. 52:1047‐1054.
   Sigworth, F.J. and Zhou, J. 1992. Analysis of nonstationary single‐channel currents. Methods Enzymol. 207:746‐762.
   Sine, S.M. and Steinbach, J.H. 1986. Activation of acetylcholine receptors on clonal mammalian BC3H‐1 cells by low concentrations of agonist. J. Physiol. (Lond.) 373:129‐162.
   Vivaudou, M.B., Singer, J.J., and Walsh, J.V. 1986. An automated technique for analysis of current transitions in multi‐level single‐channel recordings. Pflügers Arch. Eur. J. Physiol. 407:355‐364.
   Zhang, S.J. and Jackson, M.B. 1995. Properties of the GABAA receptor of rat posterior pituitary nerve terminals. J. Neurophysiol. 73:1135‐1144.
PDF or HTML at Wiley Online Library