Recording in the Cerebellar Slice

Geoffrey T. Swanson1, Anis Contractor2

1 University of Texas Medical Branch, Galveston, Texas, 2 The Salk Institute for Biological Studies, La Jolla, California
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 6.18
DOI:  10.1002/0471142301.ns0618s25
Online Posting Date:  February, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit describes techniques for the preparation of mouse cerebellar slices and electrophysiological recording from neurons in the slice. The cerebellum provides a model of motor learning that can be correlated with alterations in synaptic function. In addition, the architecture and well‚Äźdefined synaptic pathways in the cerebellar slice make this preparation a useful model for exploring general principles of synaptic transmission.

Keywords: cerebellum; synaptic transmission; Purkinje cells; granule cells; deep cerebellar nuclei; synaptic plasticity

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Recording Synaptic Currents in Cerebellar Neurons
  • Basic Protocol 2: Models of Plasticity at Cerebellar Synapses
  • Support Protocol 1: Preparation of Acute Mammalian Cerebellar Slices
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Recording Synaptic Currents in Cerebellar Neurons

  Materials
  • Cerebellar slice (see protocol 3)
  • Normal external aCSF (see recipe)
  • External solutions (see recipe)
  • CsF/CsCl or CsCl internal (pipet) solution (see reciperecipes)
  • Patch‐clamp setup for recording from visualized neurons in slice preparations (unit 6.6)
  • Pasteur pipet (5.75‐in., fire‐polished blunt ended)
  • Nomarski DIC optics with a 40× water immersion objective
  • Glass electrodes with ∼5‐µm diameter tips
  • Stimulator and stimulation‐isolation unit
  • Borosilicate patch electrodes with a series resistance of 2 to 4 MΩ after polishing
  • Oscilloscope
  • Patch pipet puller
  • Microforge
  • Additional reagents and equipment for electrophysiological equipment and whole‐cell recording techniques (units 6.6& 6.7)

Basic Protocol 2: Models of Plasticity at Cerebellar Synapses

  Materials
  • K‐gluconate internal (pipet) solution (see recipe)
  • External solutions (see reciperecipes)
  • Glass stimulating electrodes with a ∼5‐µm diameter tip
  • Stimulator and stimulation‐isolation unit
  • Additional reagents and equipment for patch clamping cells (see protocol 1)

Support Protocol 1: Preparation of Acute Mammalian Cerebellar Slices

  Materials
  • Partial replacement sucrose aCSF (see recipe)
  • 95% O 2/5% CO 2
  • Mice (<30 days postnatal)
  • Isoflurane (or a similar anesthetic)
  • Cyanoacrylate glue
  • Normal incubation aCSF (see recipe)
  • Vibrating microslicer with pre‐chilled stage
  • Holding chamber for slices (e.g., a 100‐ml plastic beaker containing a mesh platform braced against a 1‐ml plastic pipet tip into which the 95% O 2/5% CO 2 line is inserted)
  • Large dissecting scissors
  • Petri dishes or weigh boats
  • Curved forceps
  • Dissecting chamber (e.g., a petri dish with a thin layer of Sylgard polymer covering the bottom)
  • Spatula
  • Insect pins
  • Scalpel or razor blade
  • Transfer pipet
  • Pasteur pipet (5.75‐in. glass, broken and fire polished)
  • Heating unit with an aluminum block that will contain the holding chamber
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Aghajanian, G.K. and Rasmussen, K. 1989. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331‐338.
   Anchisi, D., Scelfo, B., and Tempia, F. 2001. Postsynaptic currents in deep cerebellar nuclei. J. Neurophysiol. 85:323‐331.
   Casado, M., Isope, P., and Ascher, P. 2002. Involvement of presynaptic N‐methyl‐D‐aspartate receptors in cerebellar long‐term depression. Neuron 33:123‐130.
   Chevaleyre, V. and Castillo, P.E. 2002. Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc. Natl. Acad. Sci. U.S.A. 99:9538‐9543.
   Dieudonne, S. and Dumoulin, A. 2000. Serotonin‐driven long‐range inhibitory connections in the cerebellar cortex. J. Neurosci. 20:1837‐1848.
   Geiger, J.R., Bischofberger, J., Vida, I., Frobe, U., Pfitzinger, S., Weber, H.J., Haverkampf, K., and Jonas, P. 2002. Patch‐clamp recording in brain slices with improved slicer technology. Pflugers Arch. 443:491‐501.
   Geiger, J.R. and Jonas, P. 2000. Dynamic control of presynaptic Ca2+ inflow by fast‐inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927‐939.
   Hansel, C. and Linden, D.J. 2000. Long‐term depression of the cerebellar climbing fiber–Purkinje neuron synapse. Neuron. 26:473‐482.
   Hansel, C., Linden, D.J., and D'Angelo, E. 2001. Beyond parallel fiber LTD: The diversity of synaptic and non‐synaptic plasticity in the cerebellum. Nat. Neurosci. 4:467‐475.
   Häusser, M. and Roth, A. 1997. Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J. Neurosci. 17:7606‐7625.
   Ito, M. 1984. The Cerebellum and Neural Control. Raven, New York.
   Ito, M. 2001. Cerebellar long‐term depression: Characterization, signal transduction, and functional roles. Physiol. Rev. 81:1143‐1195.
   Jakab, R.L. and Hamori, J. 1998. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. 179:81‐88.
   Kondo, S. and Marty, A. 1998. Synaptic currents at individual connections among stellate cells in rat cerebellar slices. J. Physiol. 509:221‐232.
   Laine, J. and Axelrad, H. 1998. Lugaro cells target basket and stellate cells in the cerebellar cortex. Neuroreport 9:2399‐2403.
   Mitchell, S.J. and Silver, R.A. 2000a. GABA spillover from single inhibitory axons suppresses low‐frequency excitatory transmission at the cerebellar glomerulus. J. Neurosci. 20:8651‐8658.
   Mitchell, S.J. and Silver, R.A. 2000b. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 404:498‐502.
   Monaghan, P.L., Beitz, A.J., Larson, A.A., Altschuler, R.A., Madl, J.E., and Mullett, M.A. 1986. Immunocytochemical localization of glutamate‐, glutaminase‐ and aspartate aminotransferase‐like immunoreactivity in the rat deep cerebellar nuclei. Brain Res. 363:364‐370.
   Palay, S.L. and Chan‐Palay, V. 1974. Cerebellar Cortex: Cytology and Organization. Springer, New York.
   Pearce, R.A. 1993. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron. 10:189‐200.
   Pouzat, C. and Marty, A. 1998. Autaptic inhibitory currents recorded from interneurones in rat cerebellar slices. J. Physiol. 509:777‐783.
   Roth, A. and Häusser, M. 2001. Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings. J. Physiol. 535:445‐472.
   Sakurai, M. 1987. Synaptic modification of parallel fibre–Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. J. Physiol. 394:463‐480.
   Salin, P.A., Malenka, R.C., and Nicoll, R.A. 1996. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797‐803.
   Telgkamp, P. and Raman, I.M. 2002. Depression of inhibitory synaptic transmission between Purkinje cells and neurons of the cerebellar nuclei. J. Neurosci. 22:8447‐8457.
   Wang, S.S., Denk, W., and Hausser, M. 2000. Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3:1266‐1273.
   Weisskopf, M.G., Castillo, P.E., Zalutsky, R.A., and Nicoll, R.A. 1994 Mediation of hippocampal mossy fiber long‐term potentiation by cyclic AMP. Science 265:1878‐1882.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library