Recording in the Cerebellar Slice

Geoffrey T. Swanson1, Anis Contractor2

1 University of Texas Medical Branch, Galveston, Texas, 2 The Salk Institute for Biological Studies, La Jolla, California
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 6.18
DOI:  10.1002/0471142301.ns0618s25
Online Posting Date:  February, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


This unit describes techniques for the preparation of mouse cerebellar slices and electrophysiological recording from neurons in the slice. The cerebellum provides a model of motor learning that can be correlated with alterations in synaptic function. In addition, the architecture and well‚Äźdefined synaptic pathways in the cerebellar slice make this preparation a useful model for exploring general principles of synaptic transmission.

Keywords: cerebellum; synaptic transmission; Purkinje cells; granule cells; deep cerebellar nuclei; synaptic plasticity

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Recording Synaptic Currents in Cerebellar Neurons
  • Basic Protocol 2: Models of Plasticity at Cerebellar Synapses
  • Support Protocol 1: Preparation of Acute Mammalian Cerebellar Slices
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Recording Synaptic Currents in Cerebellar Neurons

  • Cerebellar slice (see protocol 3)
  • Normal external aCSF (see recipe)
  • External solutions (see recipe)
  • CsF/CsCl or CsCl internal (pipet) solution (see reciperecipes)
  • Patch‐clamp setup for recording from visualized neurons in slice preparations (unit 6.6)
  • Pasteur pipet (5.75‐in., fire‐polished blunt ended)
  • Nomarski DIC optics with a 40× water immersion objective
  • Glass electrodes with ∼5‐µm diameter tips
  • Stimulator and stimulation‐isolation unit
  • Borosilicate patch electrodes with a series resistance of 2 to 4 MΩ after polishing
  • Oscilloscope
  • Patch pipet puller
  • Microforge
  • Additional reagents and equipment for electrophysiological equipment and whole‐cell recording techniques (units 6.6& 6.7)

Basic Protocol 2: Models of Plasticity at Cerebellar Synapses

  • K‐gluconate internal (pipet) solution (see recipe)
  • External solutions (see reciperecipes)
  • Glass stimulating electrodes with a ∼5‐µm diameter tip
  • Stimulator and stimulation‐isolation unit
  • Additional reagents and equipment for patch clamping cells (see protocol 1)

Support Protocol 1: Preparation of Acute Mammalian Cerebellar Slices

  • Partial replacement sucrose aCSF (see recipe)
  • 95% O 2/5% CO 2
  • Mice (<30 days postnatal)
  • Isoflurane (or a similar anesthetic)
  • Cyanoacrylate glue
  • Normal incubation aCSF (see recipe)
  • Vibrating microslicer with pre‐chilled stage
  • Holding chamber for slices (e.g., a 100‐ml plastic beaker containing a mesh platform braced against a 1‐ml plastic pipet tip into which the 95% O 2/5% CO 2 line is inserted)
  • Large dissecting scissors
  • Petri dishes or weigh boats
  • Curved forceps
  • Dissecting chamber (e.g., a petri dish with a thin layer of Sylgard polymer covering the bottom)
  • Spatula
  • Insect pins
  • Scalpel or razor blade
  • Transfer pipet
  • Pasteur pipet (5.75‐in. glass, broken and fire polished)
  • Heating unit with an aluminum block that will contain the holding chamber
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Aghajanian, G.K. and Rasmussen, K. 1989. Intracellular studies in the facial nucleus illustrating a simple new method for obtaining viable motoneurons in adult rat brain slices. Synapse 3:331‐338.
   Anchisi, D., Scelfo, B., and Tempia, F. 2001. Postsynaptic currents in deep cerebellar nuclei. J. Neurophysiol. 85:323‐331.
   Casado, M., Isope, P., and Ascher, P. 2002. Involvement of presynaptic N‐methyl‐D‐aspartate receptors in cerebellar long‐term depression. Neuron 33:123‐130.
   Chevaleyre, V. and Castillo, P.E. 2002. Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP. Proc. Natl. Acad. Sci. U.S.A. 99:9538‐9543.
   Dieudonne, S. and Dumoulin, A. 2000. Serotonin‐driven long‐range inhibitory connections in the cerebellar cortex. J. Neurosci. 20:1837‐1848.
   Geiger, J.R., Bischofberger, J., Vida, I., Frobe, U., Pfitzinger, S., Weber, H.J., Haverkampf, K., and Jonas, P. 2002. Patch‐clamp recording in brain slices with improved slicer technology. Pflugers Arch. 443:491‐501.
   Geiger, J.R. and Jonas, P. 2000. Dynamic control of presynaptic Ca2+ inflow by fast‐inactivating K+ channels in hippocampal mossy fiber boutons. Neuron 28:927‐939.
   Hansel, C. and Linden, D.J. 2000. Long‐term depression of the cerebellar climbing fiber–Purkinje neuron synapse. Neuron. 26:473‐482.
   Hansel, C., Linden, D.J., and D'Angelo, E. 2001. Beyond parallel fiber LTD: The diversity of synaptic and non‐synaptic plasticity in the cerebellum. Nat. Neurosci. 4:467‐475.
   Häusser, M. and Roth, A. 1997. Estimating the time course of the excitatory synaptic conductance in neocortical pyramidal cells using a novel voltage jump method. J. Neurosci. 17:7606‐7625.
   Ito, M. 1984. The Cerebellum and Neural Control. Raven, New York.
   Ito, M. 2001. Cerebellar long‐term depression: Characterization, signal transduction, and functional roles. Physiol. Rev. 81:1143‐1195.
   Jakab, R.L. and Hamori, J. 1998. Quantitative morphology and synaptology of cerebellar glomeruli in the rat. Anat. Embryol. 179:81‐88.
   Kondo, S. and Marty, A. 1998. Synaptic currents at individual connections among stellate cells in rat cerebellar slices. J. Physiol. 509:221‐232.
   Laine, J. and Axelrad, H. 1998. Lugaro cells target basket and stellate cells in the cerebellar cortex. Neuroreport 9:2399‐2403.
   Mitchell, S.J. and Silver, R.A. 2000a. GABA spillover from single inhibitory axons suppresses low‐frequency excitatory transmission at the cerebellar glomerulus. J. Neurosci. 20:8651‐8658.
   Mitchell, S.J. and Silver, R.A. 2000b. Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 404:498‐502.
   Monaghan, P.L., Beitz, A.J., Larson, A.A., Altschuler, R.A., Madl, J.E., and Mullett, M.A. 1986. Immunocytochemical localization of glutamate‐, glutaminase‐ and aspartate aminotransferase‐like immunoreactivity in the rat deep cerebellar nuclei. Brain Res. 363:364‐370.
   Palay, S.L. and Chan‐Palay, V. 1974. Cerebellar Cortex: Cytology and Organization. Springer, New York.
   Pearce, R.A. 1993. Physiological evidence for two distinct GABAA responses in rat hippocampus. Neuron. 10:189‐200.
   Pouzat, C. and Marty, A. 1998. Autaptic inhibitory currents recorded from interneurones in rat cerebellar slices. J. Physiol. 509:777‐783.
   Roth, A. and Häusser, M. 2001. Compartmental models of rat cerebellar Purkinje cells based on simultaneous somatic and dendritic patch‐clamp recordings. J. Physiol. 535:445‐472.
   Sakurai, M. 1987. Synaptic modification of parallel fibre–Purkinje cell transmission in in vitro guinea‐pig cerebellar slices. J. Physiol. 394:463‐480.
   Salin, P.A., Malenka, R.C., and Nicoll, R.A. 1996. Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16:797‐803.
   Telgkamp, P. and Raman, I.M. 2002. Depression of inhibitory synaptic transmission between Purkinje cells and neurons of the cerebellar nuclei. J. Neurosci. 22:8447‐8457.
   Wang, S.S., Denk, W., and Hausser, M. 2000. Coincidence detection in single dendritic spines mediated by calcium release. Nat. Neurosci. 3:1266‐1273.
   Weisskopf, M.G., Castillo, P.E., Zalutsky, R.A., and Nicoll, R.A. 1994 Mediation of hippocampal mossy fiber long‐term potentiation by cyclic AMP. Science 265:1878‐1882.
PDF or HTML at Wiley Online Library