Quantifying Recording Quality in In Vivo Striatal Recordings

Danielle M. Friend1, Caleb Kemere2, Alexxai V. Kravitz3

1 National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, 2 Department of Electrical and Computer Engineering, Rice University, Houston, Texas, 3 National Institute of Drug Abuse, NIH, Baltimore, Maryland
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 6.28
DOI:  10.1002/0471142301.ns0628s70
Online Posting Date:  January, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

The striatum mediates a variety of functions including movement, decision‐making, motivation, and reward learning. In vivo recording is a powerful technique that allows for the interrogation of these striatal functions while an animal is awake and behaving. Here, we describe equipment needed and general setup for performing in vivo electrophysiology experiments, data processing, and quantification of recording quality. While this protocol is focused on striatal recordings, concepts should translate to other structures as well. © 2015 by John Wiley & Sons, Inc.

Keywords: in vivo electrophysiology; striatum; recording quality; spike sorting

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Beaker of saline
  • Recording device (single electrode, micro‐electrode array, silicone probe)
  • Recording chamber/Faraday cage
  • Data acquisition/analysis system
  • High‐pass and low‐pass filters
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Avila, I., Parr‐Brownlie, L.C., Brazhnik, E., Castaneda, E., Bergstrom, D.A., and Walters, J.R. 2010. Beta frequency synchronization in basal ganglia output during rest and walk in a hemiparkinsonian rat. Exp. Neurol. 221:307‐319.
  Barretto, R.P. and Schnitzer, M.J. 2012a. In vivo microendoscopy of the hippocampus. Cold Spr. Harb. Protoc. 2012:1092‐1099.
  Barretto, R.P. and Schnitzer, M.J. 2012b. In vivo optical microendoscopy for imaging cells lying deep within live tissue. Cold Spr. Harb. Protoc. 2012:1029‐1034.
  Berenyi, A., Somogyvari, Z., Nagy, A.J., Roux, L., Long, J.D., Fujisawa, S., Stark, E., Leonardo, A., Harris, T.D., and Buzsaki, G. 2014. Large‐scale, high‐density (up to 512 channels) recording of local circuits in behaving animals. J. Neurophysiol. 111:1132‐1149.
  Bergqvist, P.B., Dong, J., and Blier, P. 1999. Effect of atypical antipsychotic drugs on 5‐HT2 receptors in the rat orbito‐frontal cortex: An in vivo electrophysiological study. Psychopharmacology 143:89‐96.
  Berke, J.D. 2008. Uncoordinated firing rate changes of striatal fast‐spiking interneurons during behavioral task performance. J. Neurosci. 28:10075‐10080.
  Berke, J.D., Okatan, M., Skurski, J., and Eichenbaum, H.B. 2004. Oscillatory entrainment of striatal neurons in freely moving rats. Neuron 43:883‐896.
  Brazhnik, E., Cruz, A.V., Avila, I., Wahba, M.I., Novikov, N., Ilieva, N.M., McCoy, A.J., Gerber, C., and Walters, J.R. 2012. State‐dependent spike and local field synchronization between motor cortex and substantia nigra in hemiparkinsonian rats. J. Neurosci.32:7869‐7880.
  Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., and Moore, C.I. 2009. Driving fast‐spiking cells induces gamma rhythm and controls sensory responses. Nature 459:663‐667.
  Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H., and Moore, C.I. 2010. Targeted optogenetic stimulation and recording of neurons in vivo using cell‐type‐specific expression of Channelrhodopsin‐2. Nat. Protoc. 5:247‐254.
  Csicsvari, J., Henze, D.A., Jamieson, B., Harris, K.D., Sirota, A., Bartho, P., Wise, K.D., and Buzsaki, G. 2003. Massively parallel recording of unit and local field potentials with silicon‐based electrodes. J. Neurophysiol. 90:1314‐1323.
  Cui, G., Jun, S.B., Jin, X., Pham, M.D., Vogel, S.S., Lovinger, D.M., and Costa, R.M. 2013. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494:238‐242.
  Davies, D.L. and Bouldin, D.W. 1979. A cluster separation measure. IEEE Transact. Pattern Anal. Machine Intelligence 1:224‐227.
  Dunn, J.C. 1973. A fuzzy relative of the ISODATA process and its use in detecting compact well‐separated clusters. J. Cybernet. 3:32‐57.
  Einevoll, G.T., Franke, F., Hagen, E., Pouzat, C., and Harris, K.D. 2012. Towards reliable spike‐train recordings from thousands of neurons with multielectrodes. Curr. Opin. Neurobiol. 22:11‐17.
  Gittis, A.H., Leventhal, D.K., Fensterheim, B.A., Pettibone, J.R., Berke, J.D., and Kreitzer, A.C. 2011. Selective inhibition of striatal fast‐spiking interneurons causes dyskinesias. J. Neurosci. 31:15727‐15731.
  Hubel, D.H. 1957. Tungsten microelectrode for recording from single units. Science 125:549‐550.
  Jin, X., Tecuapetla, F., and Costa, R.M. 2014. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17:423‐430.
  Joshua, M., Elias, S., Levine, O., and Bergman, H. 2007. Quantifying the isolation quality of extracellularly recorded action potentials. J. Neurosci. Methods 163:267‐282.
  Kloosterman, F., Layton, S.P., Chen, Z., and Wilson, M.A. 2014. Bayesian decoding using unsorted spikes in the rat hippocampus. J. Neurophysiol. 111:217‐227.
  Kravitz, A.V., Tye, L.D., and Kreitzer, A.C. 2012. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15:816‐818.
  Kravitz, A.V., Owen, S.F., and Kreitzer, A.C. 2013. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings. Brain Res. 1511:21‐32.
  Lewicki, M.S. 1998. A review of methods for spike sorting: the detection and classification of neural action potentials. Network 9:R53‐R78.
  Lima, S.Q., Hromadka, T., Znamenskiy, P., and Zador, A.M. 2009. PINP: A new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PloS One 4:e6099.
  Schmitzer‐Torbert, N., Jackson, J., Henze, D., Harris, K., and Redish, A.D. 2005. Quantitative measures of cluster quality for use in extracellular recordings. Neuroscience 131:1‐11.
  Wan, X. and Peoples, L.L. 2008. Amphetamine exposure enhances accumbal responses to reward‐predictive stimuli in a pavlovian conditioned approach task. J. Neurosci. 28:7501‐7512.
  Wheeler, B.C. 1998. Automatic discrimination of single units. In Methods for Neural Ensemble Recordings (M.A.L. Nicolelis, ed.). pp. 62.75. CRC Press, Boca Raton, Fla.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library