Sampling Phasic Dopamine Signaling with Fast‐Scan Cyclic Voltammetry in Awake, Behaving Rats

S.M. Fortin1, J.J. Cone1, S. Ng‐Evans2, J.E. McCutcheon3, M.F. Roitman4

1 Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois, 2 Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, 3 Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, United Kingdom, 4 Department of Psychology, University of Illinois at Chicago, Chicago, Illinois
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 7.25
DOI:  10.1002/0471142301.ns0725s70
Online Posting Date:  January, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Fast‐scan cyclic voltammetry (FSCV) is an electrochemical technique that permits the in vivo measurement of extracellular fluctuations in multiple chemical species. The technique is frequently utilized to sample sub‐second (phasic) concentration changes of the neurotransmitter dopamine in awake and behaving rats. Phasic dopamine signaling is implicated in reinforcement, goal‐directed behavior, and locomotion, and FSCV has been used to investigate how rapid changes in striatal dopamine concentration contribute to these and other behaviors. This unit describes the instrumentation and construction, implantation, and use of components required to sample and analyze dopamine concentration changes in awake rats with FSCV. © 2015 by John Wiley & Sons, Inc.

Keywords: fast‐scan cyclic voltammetry; dopamine; reward; nucleus accumbens; motivation; reinforcement

PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1:

  • Isopropyl alcohol (Sigma‐Aldrich, cat. no. I9030), filtered
  • Devcon 5‐min epoxy (Fisher Scientific, cat. no. NC9987160)
  • 1 N HCl (Fisher Scientific, cat. no. SA48‐1)
  • Sprague Dawley Rats (Charles River)
  • Ketamine
  • Xylazine
  • Betadine
  • Ethanol
  • Jet‐repair dental acrylic (Lang Dental, cat. no. 1405)
  • Carbon fiber (7 μm in diameter; Goodfellow Corp., cat. no. C005722)
  • 10‐cm borosilicate glass capillary tube (4 in., 0.6 mm OD × 0.4 mm ID; A‐M Systems, cat. no. 624500)
  • Thermo/Barnant vacuum pump (Midland Scientific, cat. no. BAR 400‐3910)
  • Vertical microelectrode puller (Narishige Group, cat. no. PE‐22)
  • Scissors
  • Scalpel with a #11 surgical blade (Fisher Scientific, cat. no. 14‐840‐16)
  • Light microscope with a graticule in the eyepiece
  • Microscope slide coated in clear packing tape
  • Sculpting putty
  • Gold pins (Newark, cat. no. SPC15509)
  • Bare wires (30‐G, 3 in. (7.6 cm), UL1423 type, Squires Electronics, Cornelius, or custom)
  • Silverprint conductive paint (GC Electronics, cat. no. 22‐024)
  • Three types of heat‐shrinkable flexible polyolefin tubing: 3/32 in. i.d. (APD, cat. no. 00‐051128‐59888‐7), 3/64 in. i.d., clear (Digi‐Key, cat. no. KY364C‐ND), and 3/64 in. i.d. (Altex, cat. no. HST3/64)
  • Micromanipulator (University of Illinois at Chicago Research Resources Center, custom; Fig. A), loaded with a carbon fiber electrode (Fig. ).
  • Silver wire (0.5 mm diameter, Sigma‐Aldrich, cat. no. 327026‐20 G)
  • 9 V battery with stainless steel or copper wires soldered to the terminals
  • Twisted stainless‐steel stimulating electrodes (20 mm, Plastics One, cat. no. MS303T/2‐B/SPC)
  • Animal clippers
  • Small animal stereotaxic instrument (David Kopf Instruments, model 900) with:
    • Non‐rupture ear bars (David Kopf Instruments, cat. no. 955)
    • Clamp rod for stereotaxic frame (BASi, cat. no. MD‐1521)
    • Probe clamp (BASi, cat. no. MD‐1520)
  • Gauze
  • Stainless steel surgical screws (3/16 in., Small Parts through Amazon, ASIN, cat. no. B000FN5XE0)
  • Surgical drill bit (0.7 mm diameter tip, Fine Science Tools, cat. no. 19008‐07)
  • Guide cannula (BASi, cat. no. MD‐2251)
  • Reference electrode: polyimide‐insulated stainless steel electrode (0.01 in. diameter, 3 in. length, tapered tip size 8°, AC resistance 12 MΩ; A‐M Systems, cat. no. 571500)
  • Flow injection system (University of Illinois at Chicago Research Resources Center, custom)
  • Polyimide‐insulated stainless steel electrode (0.01 in. diameter, 3 in. length, tapered tip size 8°, AC resistance 12 MΩ; A‐M Systems, cat. no. 571500)
  • Lesion‐making device (Ugo Basile, cat. no. 53500)
  • Electric industrial heat gun (Weller, cat. no. 6966C)
  • Hardware:
    • Multifunction input/output card: PCI‐6052E (16 bit, 333 kHz) (National Instruments)
    • Potentiostat: EI‐400 biopotentiostat (Cypress Systems, cat. no. 66‐El‐400) or Custom (FSCV interface with integrated timing circuitry combined with amplifier/current‐to‐voltage converter headstage [Electronics and Materials Engineering (EME) Shop, Seattle, Washington]
    • Headstage: low‐pass‐filtered amplifier/current‐to‐voltage headstage, standard amplification is 200 nA/V. Up to four channels for FSCV. Various configurations of this headstage allow for recording in small animals (mice, birds, fish) and larger animals such as rats and monkeys (EME Shop, Seattle, Washington; see Fig. B‐C)
    • Commutator: 9‐ or 25‐channel (Crist Instruments, cat. no. 4‐TBC‐9 S or 4‐TBC‐25); a 25‐channel commutator with a liquid tube cannula is also available from Crist Instruments for experiments that utilize a fluid line (cat. no. 4‐TBC‐9‐LT) (Fig. B,C)
    • Breakout box interface and power supply: a multifunction piece of equipment that separates digital and analog signals, sets the grounding scheme, reduces environmental noise, and filters and divides the applied waveform [custom; Electronics and Materials Engineering (EME) Shop, Seattle, Washington; Fig. A]
    • Extra‐tall behavioral chamber with TTL output card (DIG‐726TTL) to allow for time‐stamping animal‐ and machine‐generated events in the voltammetry record (Med Associates, custom to accommodate experimental needs); the extra‐tall chamber diminishes the probability of artifacts imparted to the recording because of the manipulator housing the electrode knocking into the roof or walls of the chamber (Fig. C)
    • Computer with two, preferably three, full‐height and full‐length PCI slots
  • Hardware for stimulation:
    • Digital‐to‐analog card: PCI‐6711 (National Instruments, cat. no. 777740‐01); this card is used in conjunction with the PCI‐6052E (see Hardware, above) to reduce overlap of stimulation with the data acquisition scans
    • Constant‐current stimulator: e.g., Neurolog NL800 (Harvard Apparatus, cat. no. 650276), ISO‐flex stimulus isolator (A.M.P.I., Jerusalem, Israel) or Model 2200 analog stimulus isolator (A‐M Systems, cat. no. 850000) (Fig. A)
  • Software:
    • Analysis software options include: HDCV (Bucher et al., ); TarHeel CV (UNC Electronics Facility); or Demon (Yorgason et al., ; Wake Forest Innovations) for: visualization of color plots and current traces; cutting and splicing voltammetry files to TTLs (recorded events); performing principal components analysis (chemometrics); and compiling chemometric data files for graphing and statistical analysis
  • Additional reagents and equipment for injection of rodents (appendix 4f)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
  Anstrom, K.K., Miczek, K.A., and Budygin, E.A. 2009. Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3‐12.
  Aragona, B.J., Day, J.J., Roitman, M.F., Cleaveland, N.A., Wightman, R.M., and Carelli, R.M. 2009. Regional specificity in the real‐time development of phasic dopamine transmission patterns during acquisition of a cue‐cocaine association in rats. Eur. J. Neurosci. 30:1889‐1899.
  Ariansen, J.L., Heien, M.L.A.V., Hermans, A., Phillips, P.E.M., Hernadi, I., Bermudez, M.A., Schultz, W., and Wightman, R.M. 2012. Monitoring extracellular pH, oxygen, and dopamine during reward delivery in the striatum of primates. Front. Behav. Neurosci. 6:36.
  Arumugam, P.U., Zeng, H., Siddiqui, S., Covey, D.P., Carlisle, J.A., and Garris, P.A. 2013. Characterization of ultrananocrystalline diamond microsensors for in vivo dopamine detection. Appl. Phys. Lett. 102:253107.
  Baur, J.E., Kristensen, E.W., May, L.J., Wiedemann, D.J., and Wightman, R.M. 1988. Fast‐scan voltammetry of biogenic amines. Anal. Chem. 60:1268‐1272.
  Brown, H.D., McCutcheon, J.E., Cone, J.J., Ragozzino, M.E., and Roitman, M.F. 2011. Primary food reward and reward‐predictive stimuli evoke different patterns of phasic dopamine signaling throughout the striatum. Eur. J. Neurosci. 34:1997‐2006.
  Bucher, E.S., Brooks, K., Verber, M.D., Keithley, R.B., Owesson‐White, C., Carroll, S., Takmakov, P., McKinney, C.J., and Wightman, R.M. 2013. Flexible software platform for fast‐scan cyclic voltammetry data acquisition and analysis. Anal. Chem. 85:10344‐10353.
  Cheer, J.F., Aragona, B.J., Heien, M.L.A.V., Seipel, A.T., Carelli, R.M., and Wightman, R.M. 2007. Coordinated accumbal dopamine release and neural activity drive goal‐directed behavior. Neuron 54:237‐244.
  Ciliax, B.J., Heilman, C., Demchyshyn, L.L., Pristupa, Z.B., Ince, E., Hersch, S.M., Niznik, H.B., and Levey, A.I. 1995. The dopamine transporter: Immunochemical characterization and localization in brain. J. Neurosci. 15:1714‐1723.
  Clark, J.J., Sandberg, S.G., Wanat, M.J., Gan, J.O., Horne, E.A., Hart, A.S., Akers, C.A., Parker, J.G., Willuhn, I., Martinez, V., Evans, S.B., Stella, N., and Phillips, P.E. 2010. Chronic microsensors for longitudinal, subsecond dopamine detection in behaving animals. Nat. Methods 7:126‐129.
  Cone, J.J., McCutcheon, J.E., and Roitman, M.F. 2014. Ghrelin acts as an interface between physiological state and phasic dopamine signaling. J. Neurosci. 34:4905‐4913.
  Cone, J.J., Chartoff, E.H., Potter, D.N., Ebner, S.R., and Roitman, M.F. 2013. Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression. PLoS One 8:e58251.
  Daberkow, D.P., Brown, H.D., Bunner, K.D., Kraniotis, S.A., Doellman, M.A., Ragozzino, M.E., Garris, P.A., and Roitman, M.F. 2013. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J. Neurosci. 33:452‐463.
  Day, J.J., Roitman, M.F., Wightman, R.M., and Carelli, R.M. 2007. Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens. Nat. Neurosci. 10:1020‐1028.
  Day, J.J., Jones, J.L., Wightman, R.M., and Carelli, R.M. 2010. Phasic nucleus accumbens dopamine release encodes effort‐ and delay‐related costs. Biol. Psychiatr. 68:306‐309.
  Dreyer, J.K., Herrik, K.F., Berg, R.W., and Hounsgaard, J.D. 2010. Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 30:14273‐14283.
  Ehrich, J.M., Phillips, P.E., and Chavkin, C. 2014. Kappa opioid receptor activation potentiates the cocaine‐induced increase in evoked dopamine release recorded in vivo in the mouse nucleus accumbens. Neuropsychopharmacology doi: 10.1038/npp.2014.157.
  Faber, N.M. and Rajkó, R. 2007. How to avoid over‐fitting in multivariate calibration‐the conventional validation approach and an alternative. Anal. Chim. Acta 595:98‐106.
  Flagel, S.B., Clark, J.J., Robinson, T.E., Mayo, L., Czuj, A., Willuhn, I., Akers, C.A., Clinton, S.M., Phillips, P.E.M., and Akil, H. 2011. A selective role for dopamine in stimulus‐reward learning. Nature 469:53‐57.
  Garris, P.A., Ciolkowski, E.L., Pastore, P., and Wightman, R.M. 1994. Efflux of dopamine from the synaptic cleft in the nucleus accumbens of the rat brain. J. Neurosci. 14:6084‐6093.
  Garris, P.A., Christensen, J.R., Rebec, G.V., and Wightman, R.M. 1997. Real‐time measurement of electrically evoked extracellular dopamine in the striatum of freely moving rats. J. Neurochem. 68:152‐161.
  Garris, P.A., Kilpatrick, M., Bunin, M.A., Michael, D., Walker, Q.D., and Wightman, R.M. 1999. Dissociation of dopamine release in the nucleus accumbens from intracranial self‐stimulation. Nature 398:67‐69.
  Hashemi, P., Dankoski, E.C., Petrovic, J., Keithley, R.B., and Wightman, R.M. 2009. Voltammetric detection of 5‐hydroxytryptamine release in the rat brain. Anal. Chem. 81:9462‐9471.
  Hashemi, P., Dankoski, E.C., Wood, K.M., Ambrose, R.E., and Wightman, R.M. 2011. In vivo electrochemical evidence for simultaneous 5‐HT and histamine release in the rat substantia nigra pars reticulata following medial forebrain bundle stimulation. J. Neurochem. 118:749‐759.
  Heien, M.L.A.V., Johnson, M.A., and Wightman, R.M. 2004. Resolving neurotransmitters detected by fast‐scan cyclic voltammetry. Anal. Chem. 76:5697‐5704.
  Heien, M.L.A.V., Phillips, P.E.M., Stuber, G.D., Seipel, A.T., and Wightman, R.M. 2003. Overoxidation of carbon‐fiber microelectrodes enhances dopamine adsorption and increases sensitivity. Analyst 128:1413‐1419.
  Hermans, A., Keithley, R.B., Kita, J.M., Sombers, L.A., and Wightman, R.M. 2008. Dopamine detection with fast‐scan cyclic voltammetry used with analog background subtraction. Anal. Chem. 80:4040‐4048.
  Iravani, M.M., Millar, J., and Kruk, Z.L. 1998. Differential release of dopamine by nitric oxide in subregions of rat caudate putamen slices. J. Neurochem. 71:1969‐1977.
  Jones, S.R., Lee, T.H., Wightman, R.M., and Ellinwood, E.H. 1996. Effects of intermittent and continuous cocaine administration on dopamine release and uptake regulation in the striatum: In vitro voltammetric assessment. Psychopharmacology 126:331‐338.
  Jones, J.L., Day, J.J., Aragona, B.J., Wheeler, R.A., Wightman, R.M., and Carelli, R.M. 2010. Basolateral amygdala modulates terminal dopamine release in the nucleus accumbens and conditioned responding. Biol. Psychiatr. 67:737‐744.
  Keithley, R.B. and Wightman, R.M. 2011. Assessing principal component regression prediction of neurochemicals detected with fast‐scan cyclic voltammetry. ACS Chem. Neurosci. 2:514‐525.
  Keithley, R.B., Heien, M.L., and Wightman, R.M. 2009. Multivariate concentration determination using principal component regression with residual analysis. Trends Anal. Chem. 28:1127‐1136.
  Keithley, R.B., Takmakov, P., Bucher, E.S., Belle, A.M., Owesson‐White, C.A., Park, J., and Wightman, R.M. 2011. Higher sensitivity dopamine measurements with faster‐scan cyclic voltammetry. Anal. Chem. 83:3563‐3571.
  Kile, B.M., Walsh, P.L., McElligott, Z.A., Bucher, E.S., Guillot, T.S., Salahpour, A., Caron, M.G., and Wightman, R.M. 2012. Optimizing the temporal resolution of fast‐scan cyclic voltammetry. ACS Chem. Neurosci. 3:285‐292.
  Kishida, K.T., Sandberg, S.G., Lohrenz, T., Comair, Y.G., Sáez, I., Phillips, P.E.M., and Montague, P.R. 2011. Sub‐second dopamine detection in human striatum. PloS One 6:e23291.
  Kuhr, W.G. and Wightman, R.M. 1986. Real‐time measurement of dopamine release in rat brain. Brain Res. 381:168‐171.
  Logman, M.J., Budygin, E.A., Gainetdinov, R.R., and Wightman, R.M. 2000. Quantitation of in vivo measurements with carbon fiber microelectrodes. J. Neurosci. Methods 95:95‐102.
  Natori, S., Yoshimi, K., Takahashi, T., Kagohashi, M., Oyama, G., Shimo, Y., Hattori, N., and Kitazawa, S. 2009. Subsecond reward‐related dopamine release in the mouse dorsal striatum. Neurosci. Res. 63:267‐272.
  Owesson‐White, C.A., Cheer, J.F., Beyene, M., Carelli, R.M., and Wightman, R.M. 2008. Dynamic changes in accumbens dopamine correlate with learning during intracranial self‐stimulation. Proc. Natl. Acad. Sci. U.S.A. 105:11957‐11962.
  Owesson‐White, C.A., Roitman, M.F., Sombers, L.A., Belle, A.M., Keithley, R.B., Peele, J.L., Carelli, R.M., and Wightman, R.M. 2012. Sources contributing to the average extracellular concentration of dopamine in the nucleus accumbens. J. Neurochem. 121:252‐262.
  Park, J., Kile, B.M., and Wightman, M.R. 2009. In vivo voltammetric monitoring of norepinephrine release in the rat ventral bed nucleus of the stria terminalis and anteroventral thalamic nucleus. Eur. J. Neurosci. 30:2121‐2133.
  Park, J., Takmakov, P., and Wightman, R.M. 2011. In vivo comparison of norepinephrine and dopamine release in rat brain by simultaneous measurements with fast‐scan cyclic voltammetry. J. Neurochem. 119:932‐944.
  Parker, J.G., Zweifel, L.S., Clark, J.J., Evans, S.B., Phillips, P.E.M., and Palmiter, R.D. 2010. Absence of NMDA receptors in dopamine neurons attenuates dopamine release but not conditioned approach during Pavlovian conditioning. Proc. Natl. Acad. Sci. U.S.A. 107:13491‐13496.
  Patel, A.N., Tan, S., Miller, T.S., Macpherson, J.V., and Unwin, P.R. 2013. Comparison and reappraisal of carbon electrodes for the voltammetric detection of dopamine. Anal. Chem. 85:11755‐11764.
  Phillips, P.E.M., Robinson, D.L., Stuber, G.D., Carelli, R.M., and Wightman, R.M. 2003a. Real‐time measurements of phasic changes in extracellular dopamine concentration in freely moving rats by fast‐scan cyclic voltammetry. Methods Mol. Med. 79:443‐464.
  Phillips, P.E.M., Stuber, G.D., Heien, M.L.A.V., Wightman, R.M., and Carelli, R.M. 2003b. Subsecond dopamine release promotes cocaine seeking. Nature 422:614‐618.
  Pihel, K., Walker, Q.D., and Wightman, R.M. 1996. Overoxidized polypyrrole‐coated carbon fiber microelectrodes for dopamine measurements with fast‐scan cyclic voltammetry. Anal. Chem. 68:2084‐2089.
  Richfield, E.K. 1991. Quantitative autoradiography of the dopamine uptake complex in rat brain using [3H]GBR 12935: Binding characteristics. Brain Res. 540:1‐13.
  Roberts, J.G., Toups, J.V., Eyualem, E., McCarty, G.S., and Sombers, L.A. 2013. In situ electrode calibration strategy for voltammetric measurements in vivo. Anal. Chem. 85:11568‐11575.
  Robinson, D.L., Venton, B.J., Heien, M.L.A.V., and Wightman, R.M. 2003. Detecting subsecond dopamine release with fast‐scan cyclic voltammetry in vivo. Clin. Chem. 49:1763‐1773.
  Roitman, M.F., Stuber, G.D., Phillips, P.E.M., Wightman, R.M., and Carelli, R.M. 2004. Dopamine operates as a subsecond modulator of food seeking. J. Neurosci. 24:1265‐1271.
  Runnels, P.L., Joseph, J.D., Logman, M.J., and Wightman, R.M. 1999. Effect of pH and surface functionalities on the cyclic voltammetric responses of carbon‐fiber microelectrodes. Anal. Chem. 71:2782‐2789.
  Ryczko, D., Grätsch, S., Auclair, F., Dubé, C., Bergeron, S., Alpert, M.H., Cone, J.J., Roitman, M.F., Alford, S., and Dubuc, R. 2013. Forebrain dopamine neurons project down to a brainstem region controlling locomotion. Proc. Natl. Acad. Sci. U.S.A. 110:E3235‐E3242.
  Schluter, E.W., Mitz, A.R., Cheer, J.F., and Averbeck, B.B. 2014. Real‐time dopamine measurement in awake monkeys. PloS One 9:e98692.
  Schultz, W. 2013. Updating dopamine reward signals. Curr. Opin. Neurobiol. 23:229‐238.
  Siciliano, C.A., Calipari, E.S., Ferris, M.J., and Jones, S.R. 2014. Biphasic mechanisms of amphetamine action at the dopamine terminal. J. Neurosci. 34:5575‐5582.
  Singh, Y.S., Sawarynski, L.E., Dabiri, P.D., Choi, W.R., and Andrews, A.M. 2011. Head‐to‐head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry. Anal. Chem. 83:6658‐6666.
  Sinkala, E., McCutcheon, J.E., Schuck, M.J., Schmidt, E., Roitman, M.F., and Eddington, D.T. 2012. Electrode calibration with a microfluidic flow cell for fast‐scan cyclic voltammetry. Lab Chip 12:2403‐2408.
  Smeets, W.J.A.J. and González, A. 2000. Catecholamine systems in the brain of vertebrates: New perspectives through a comparative approach. Brain Res. Rev. 33:308‐379.
  Sossi, V. and Ruth, T.J. 2005. Micropet imaging: In vivo biochemistry in small animals. J. Neural Transm. 112:319‐330.
  Stamford, J.A. 1990. Fast cyclic voltammetry: Measuring transmitter release in “real time.” J. Neurosci. Methods 34:67‐72.
  Stamford, J.A., Kruk, Z.L., Millar, J., and Wightman, R.M. 1984. Striatal dopamine uptake in the rat: In vivo analysis by fast cyclic voltammetry. Neurosci. Lett. 51:133‐138.
  Stuber, G.D., Klanker, M., de Ridder, B., Bowers, M.S., Joosten, R.N., Feenstra, M.G., and Bonci, A. 2008. Reward‐predictive cues enhance excitatory synaptic strength onto midbrain dopamine neurons. Science 321:1690‐1692.
  Sugam, J.A., Day, J.J., Wightman, R.M., and Carelli, R.M. 2012. Phasic nucleus accumbens dopamine encodes risk‐based decision‐making behavior. Biol. Psychiatr. 71:199‐205.
  Swamy, B.E.K. and Venton, B.J. 2007. Subsecond detection of physiological adenosine concentrations using fast‐scan cyclic voltammetry. Anal. Chem. 79:744‐750.
  Takmakov, P., Zachek, M.K., Keithley, R.B., Bucher, E.S., McCarty, G.S., and Wightman, R.M. 2010. Characterization of local pH changes in brain using fast‐scan cyclic voltammetry with carbon microelectrodes. Anal. Chem. 82:9892‐9900.
  Tsai, H.‐Y., Lin, Z.‐H., and Chang, H.‐T. 2012. Tellurium‐nanowire‐coated glassy carbon electrodes for selective and sensitive detection of dopamine. Biosens. Bioelectron. 35:479‐483.
  Venton, B.J., Troyer, K.P., and Wightman, R.M. 2002. Response times of carbon fiber microelectrodes to dynamic changes in catecholamine concentration. Anal. Chem. 74:539‐546.
  Venton, B.J., Michael, D.J., and Wightman, R.M. 2003. Correlation of local changes in extracellular oxygen and pH that accompany dopaminergic terminal activity in the rat caudate‐putamen. J. Neurochem. 84:373‐381.
  Venton, B.J., Seipel, A.T., Phillips, P.E.M., Wetsel, W.C., Gitler, D., Greengard, P., Augustine, G.J., and Wightman, R.M. 2006. Cocaine increases dopamine release by mobilization of a synapsin‐dependent reserve pool. J. Neurosci. 26:3206‐3209.
  Vickrey, T.L., Condron, B., and Venton, B.J. 2009. Detection of endogenous dopamine changes in Drosophila melanogaster using fast‐scan cyclic voltammetry. Anal. Chem. 81:9306‐9313.
  Watson, C.J., Venton, B.J., and Kennedy, R.T. 2006. In vivo measurements of neurotransmitters by microdialysis sampling. Anal. Chem. 78:1391‐1399.
  Wheeler, R.A., Aragona, B.J., Fuhrmann, K.A., Jones, J.L., Day, J.J., Cacciapaglia, F., Wightman, R.M., and Carelli, R.M. 2011. Cocaine cues drive opposing context‐dependent shifts in reward processing and emotional state. Biol. Psychiatr. 69:1067‐1074.
  Wightman, R.M., May, L.J., and Michael, A.C. 1988. Detection of dopamine dynamics in the brain. Anal. Chem. 60:769A‐779A.
  Willuhn, I., Burgeno, L.M., Everitt, B.J., and Phillips, P.E.M. 2012. Hierarchical recruitment of phasic dopamine signaling in the striatum during the progression of cocaine use. Proc. Natl. Acad. Sci. U.S.A. 109:20703‐20708.
  Wu, Q., Reith, M.E., Wightman, R.M., Kawagoe, K.T., and Garris, P.A. 2001. Determination of release and uptake parameters from electrically evoked dopamine dynamics measured by real‐time voltammetry. J. Neurosci. Methods 112:119‐133.
  Yorgason, J.T., España, R.A., and Jones, S.R. 2011. Demon Voltammetry and Analysis software: Analysis of cocaine‐induced alterations in dopamine signaling using multiple kinetic measures. J. Neurosci. Methods 202:158‐164.
PDF or HTML at Wiley Online Library