Assessment of Spatial Memory Using the Radial Arm Maze and Morris Water Maze

Gary L. Wenk1

1 University of Arizona, Tucson, Arizona
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.5A
DOI:  10.1002/0471142301.ns0805as26
Online Posting Date:  May, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Behavioral tasks must be evaluated in terms of the cognitive functions they require in order to be performed. All of the tasks described in this chapter can be used with each of four experimental manipulations: stimulation of a single brain region by drugs or small electrical current, impairment of normal function by production of a lesion or administration of appropriate pharmacological agents, recording of brain activity during the performance of a specific behavioral task, or behavioral phenotyping of transgenic and knockout mice for genes expressed in specific brain regions. This unit describes protocols for the radial arm maze task and the water maze task, both of which require intact spatial memory abilities.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Use of Radial Arm Maze Task to Test Basic Working Memory
  • Alternate Protocol 1: Use of Radial Arm Maze Task to Test Working Versus Reference Memory
  • Basic Protocol 2: Use of Morris Water Maze Task to Test Spatial Memory
  • Alternate Protocol 2: Use of Water Maze Task for Spatial Probe Trial
  • Alternate Protocol 3: Use of Water Maze Task to Test Working Memory
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Use of Radial Arm Maze Task to Test Basic Working Memory

  Materials
  • Rats
  • Food reward (e.g., 10‐mg pellet of chow or sweetened breakfast cereal; see Critical Parameters)
  • Radial arm maze (Fig. ), handmade or fully automated (Coulbourn Instruments or Columbus Instruments)

Alternate Protocol 1: Use of Radial Arm Maze Task to Test Working Versus Reference Memory

  Materials
  • Rats
  • Water maze apparatus
  • Tracking system and software (Columbus Instruments, HVS Image, San Diego Instruments, or CPL Systems)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Becker, J.T., Walker, J.A., and Olton, D.S. 1980. Neuroanatomical bases of spatial memory. Brain Res. 200:307‐320.
   Bond, A.B., Cook, R.B., and Lamb, M.R. 1981. Spatial memory and the performance of rats and pigeons in the radial‐arm maze. Anim. Learn. & Behav. 9:575‐580.
   Brandeis, R., Brandys, Y., and Yehuda, S. 1989. The use of the Morris water maze in the study of memory and learning. Int. J. Neurosci. 48:29‐69.
   Brandeis, R., Sapir, M., Kapon, Y., and Borelli, G. 1991. Improvement of cognitive function by MAO‐B inhibitor L‐deprenyl in aged rats. Pharmacol. Biochem. Behav. 39:297‐304.
   Buresova, O. and Skopkova, J. 1982. Vasopressin analogues and spatial working memory in the 24‐arm radial maze. Peptides 3:725‐727.
   Crawley, J.N., Belknap, J.K., Collins, A., Crabbe, J.C., Frankel, W., Henderson, N., Hitzemann, R.J., Maxson, S.C., Miner, L.L., Silva, A.J., Wehner, J.M. Wynshaw‐Boris, A., and Paylor, R. 1997. Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology 132:107‐124.
   Devenport, L.D., Merriman, V.J., and Devenport, J.A. 1983. Effects of ethanol on enforced spatial variability in the 8‐arm radial maze. Pharmacol. Biochem. Behav. 18:55‐59.
   Gage, F.H., Dunnett, S.B., and Bjorklund, A. 1984. Spatial learning and motor deficits in aged rats. Neurobiol. Aging 5:43‐48.
   Gallagher, M., Burwell, R., and Burchinal, M. 1993. Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behav. Neurosci. 107:618‐626.
   Hagan, J.J., Alpert, J.E., Morris, R.G., and Iversen, S.D. 1983. The effects of central catecholamine depletions on spatial learning in rats. Behav. Brain Res. 9:83‐104.
   Hagan, J.J., Tweedie, F., and Morris, R.G. 1986. Lack of task specificity and absence of posttraining effects of atropine on learning. Behav. Neurosci. 100:483‐493.
   Hamilton, G.V. 1911. A study of trial and error reactions in mammals. J. Anim. Behav. 1:33‐66.
   Kavaliers, M. and Galea, L.A. 1994. Spatial water maze learning using celestial cues by the meadow vole. Microtus pennsylvanicus. Behav. Brain Res. 61:97‐100.
   Kesner, R.P. and Novak, J.M. 1982. Serial position curve in rats: Role of the dorsal hippocampus. Science 218:173‐175.
   Kolb, B., Sutherland, R.J., and Whishaw, I.Q. 1983. A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats. Behav. Neurosci. 97:13‐27.
   Levin, E.D. 1988. Psychopharmacological effects in the radial‐arm maze. Neurosci. Biobehav. Rev. 12:169‐175.
   Levy, A., Kluge, P.B., and Elsmore, T.F. 1983. Radial arm maze performance of mice: Acquisition and atropine effects. Behav. Neural Biol. 39:229‐240.
   McNamara, R.K. and Skelton, R.W. 1991. Diazepam impairs acquisition but not performance in the Morris water maze. Pharmacol. Biochem. Behav. 38:651‐658.
   McNaughton, N. and Morris, R.G. 1987. Chlordiazepoxide, an anxiolytic benzodiazepine, impairs place navigation in rats. Behav. Brain Res. 24:39‐46.
   Morris, R.G.M. 1981. Spatial localisation does not depend on the presence of local cues. Learn. Motiv. 12:239‐260.
   Morris, R.G., Garrud, J., Rawlins, N.P., and O'Keefe, J. 1982. Place navigation impaired in rats with hippocampal lesions. Nature 297:681‐683.
   Okaichi, J. and Jarrard, L.E. 1982. Scopolamine impairs performance of a place and cue task in rats. Behav. Neural Biol. 35:319‐325.
   Olton, D.S. and Samuelson, R.J. 1976. Remembrance of places passed: Spatial memory in rats. Exp. Psychol. [Anim. Behav.] 2:97‐116.
   Pitsikas, N., Carli, M., Fidecka, S., and Algeri, S. 1990. Effect of life‐long hypocaloric diet on age‐related changes in motor and cognitive behavior in a rat population. Neurobiol. Aging 11:417‐423.
   Rapp, P.R., Rosenberg, R.A., and Gallagher, M. 1987. An evaluation of spatial information processing in aged rats. Behav. Neurosci. 10:3‐12.
   Stevens, R. 1981. Scopolamine impairs spatial maze performance in rats. Physiol. & Behav. 27:385‐386.
   Sutherland, R.J., Whishaw, I.Q., and Regehr, J.C. 1982. Cholinergic receptor blockade impairs spatial localization by use of distal cues in the rat. J. Comp. Physiol. Psychol. 96:563‐573.
   Tolman, E.C., Ritchie, F.B., and Kalish, D. 1946. Studies in spatial learning. I. Orientation and the short cut. J. Exp. Psychol. 36:13‐24.
   Tsien, J.Z., Huerta, P.T., and Tonegawa, S. 1996. The essential role of hippocampal CA1 NMDA receptor‐dependent synaptic plasticity in spatial memory. Cell. 87:1327‐1338.
   Walsh, T.J., Miller, D.B., and Dyer, R.S. 1982. Trimethyltin, a selective limbic system neurotoxicant, impairs radial arm maze performance. Neurobehav. Toxicol. Teratol. 4:177‐183.
   Watts, J., Stevens, R., and Clare, R. 1981. Effects of scopolamine on radial maze performance, male rats, implications for hippocampal role in spatial memory. Physiol. & Behav. 26:845‐851.
   Wenk, G., Sweeney, J., Hughey, D., Carson, J., and Olton, D. 1986. Choline acetyltransferase inhibition does not impair radial maze performance in rats. Pharmacol. Biochem. Behav. 25:521‐526.
Key References
   Brandeis et al., 1989. See above.
  Provides a general review of the many ways this water maze task has been used to study brain function and the general theoretical principles that underlie its use.
   Olton, D.S. 1985. The radial arm maze as a tool in behavioral pharmacology. Physiol. & Behav. 40:793‐797.
  Reviews the many ways in which the radial arm maze task has been and can be used to investigate the effects of lesions or drugs upon the function of specific brain regions.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library