Macronutrient Selection in Experimental Animals

Robin B. Kanarek1

1 Tufts University, Medford, Massachusetts
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.6G
DOI:  10.1002/0471142301.ns0806gs27
Online Posting Date:  September, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

To address the question of how animals choose diets from an array of nutritionally different foods, researchers have designed experiments in which animals are provided with separate sources of the three macronutrients, protein, fat and carbohydrate. These experiments are useful for investigating the neuroanatomical and neurochemical mechanisms involved in food choice, as well as for assessing the effects of changes in physiological status (e.g., pregnancy; lactation and increased energy expenditure) or disease states (e.g., diabetes; and obesity) on nutrient intakes.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • Test compound or equipment for condition modification
  • Rats
  • Carbohydrate component (3.72 kcal/g; see recipe)
  • Fat component (7.86 kcal/g; see recipe)
  • Protein component (3.72 kcal/g; see recipe)
  • Stainless steel food cups with lids (e.g., Wahmann LC‐306)
  • 50–ml glass jar (Fisher)
  • Colored adhesive tape, 3 colors
  • Drill and appropriate bits
  • 0.5‐ to 1‐in screws with nuts
  • Individual stainless steel hanging rat cages: width: 18‐cm; length: 25.5‐cm; height: 18‐cm (Lab Products)
  • Alligator clips
  • Wire springs
  • Water bottles
  • Single‐hole stoppers with curved stainless steel spouts to fit water bottles
  • Data sheets (see Figure )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Anderson, G.H., Leprohon, C., Chambers, J.W., and Coscina, D.V. 1979. Intact regulation of protein intake during the development of hypothalamic or genetic obesity in rats. Physiol. Behav. 23:751‐755.
   Bligh, M.E., DeStefano, M.B., Kramlik, S.K., Douglas, L.W., Dubuc, P., and Castonguay, T.W. 1990. Adrenal modulation of the enhanced fat intake subsequent to fasting. Physiol. Behav. 48:373‐381.
   Blundell, J.E. 1983. Processes and problems underlying the control of food selection and nutrient intake. In Nutrition and the Brain, Vol. 6 (R.J. Wurtman, and J.J. Wurtman, eds.) pp. 164‐221. Raven Press, New York.
   Boghassian S., Jourdan, D., Dacher, M., and Alliot, J. 2001. Effect of morphine on caloric intake and macronutrient selection in male and female Lou/c/jall rats during aging. Mech. Aging Dev. 122: 1825‐1839.
   Capretta, P.J. and Rawls, L.H. 1974. Establishment of a flavor preference in rats: Importance of nursing and weaning experience. J. Comp. Physiol. Psychol. 86:670‐673.
   Friedman, M.I. 2000. Too many choices? A critical essay on macronutrient selection. In Neural and Metabolic Control of Macronutrient Selection, (H.R. Berthoud, and R.J. Seeley, eds.) pp. 11‐18. CRC Press, Boca Raton, Fla.
   Galef, B.G. Jr. and Henderson, P.W. 1972. Mother's milk: A determinant of feeding preferences of weanling rat pups. J. Comp. Physiol. Psychol. 78:213‐219.
   Harper, A.E. 1967. Effects of dietary protein content and amino acid pattern on food intake and preference. In Handbook of Physiology, Section 6: Alimentary Canal. Vol. 1 (C.F. Code, ed.) pp. 399‐410. American Physiological Society, Washington, D.C.
   Heisler, L.K., Kanarek, R.B., and Gerstein, A. 1997. Fluoxetine decreases fat and protein intakes but not carbohydrate intake in male rats. Pharmacol. Biochem. Behav. 58:767‐773.
   Heisler, L.K., Kanarek, R.B., and Homoleski, B. 1999. Reduction of fat and protein intakes but not carbohydrate intake following acute and chronic fluoxetine in female rats. Pharmacol. Biochem. Behav. 63:377‐385.
   Hrupka, B.J., Lin, Y.M., Gietzen, D.W., and Rogers, Q.R. 1997. Small changes in essential amino acid concentrations alter diet selection in amino acid‐deficient rats. J. Nutr. 127:777‐785.
   Jean, C., Fromentin, G., Tome, D., and Larue‐Achagiotis, C. 2002. Wistar rats allowed to self‐select macronutrients from weaning to maturity choose a high‐protein, high‐lipid diet. Physiol. Behav. 76:65‐73.
   Jourdan, D., Piec, I., Gaulier, J‐M., Lacassie, E., and Alliot, J. 2003. Effect of fenfluramine on caloric intake and macronutrient selection in Lou/c rats during aging. Neurobiol. Aging 24: 67‐76.
   Kanarek, R.B. 1985. Determinants of dietary self‐selection in experimental animals. Am. J. Clin. Nutr. 42:940‐950.
   Kanarek, R.B. and Beck, J.M. 1980. Role of gonadal hormones in diet selection and food utilization in female rats. Physiol. Behav. 24:381‐386.
   Kanarek, R.B. and Ho, L. 1984. Patterns of nutrient selection in rats with streptozotocin‐induced diabetes. Physiol. Behav. 32:639‐645.
   Kanarek, R.B., Feldman, P.G., and Hanes, C. 1981. Patterns of dietary self‐selection in VMH‐lesioned rats. Physiol. Behav. 27:721‐732.
   Konkle, A. T. M., Sretier, K. B., Baker S. L., and Bielajew, C. 2003. Chronic paroxetine infusion influences macronutrient selection in male Sprague‐Dawley rats. Pharmacol. Biochem. Behav. 74: 883‐890.
   Larue‐Achagiotis, C., Martin, C., Verger, P., and Louis‐Sylvestre, J. 1992. Dietary self‐selection vs. complete diet: body weight gain and meal pattern in rats. Physiol. Behav. 51:959‐999.
   Larue‐Achagiotis, C., Goubern, M., Laury, M.C., and Louis‐Sylvestre, J. 1994. Energy balance in an inbred strain of rats: Comparison with the Wistar strain. Physiol. Behav. 55:483‐487.
   Lat, J. 1967. Self‐selection of dietary components. In Handbook of Physiology, Section 6: Alimentary canal. Vol. 1 (C.F. Code, ed.) pp. 367‐386. American Physiological Society, Washington, D.C.
   Lax, P., Larue‐Achagiotis, C., Martel, P., Madrid, J.A., and Verger, P. 1998. Repeated short‐fasting modifies the macronutrient self‐selection pattern in rats. Physiol. Behav. 65:69‐76.
   Leibowitz, S.F., Lucas, D.J., Leibowitz, K.L., and Jhanwar, Y.S. 1991. Developmental patterns of macronutrient intake in female and male rats from weaning to maturity. Physiol. Behav. 50:1167‐1174.
   Leprohon, C. and Anderson, G.H. 1980. Maternal diet affects feeding behavior of self‐selecting weanling rats. Physiol. Behav. 24:553‐339.
   Leprohon, C., Woodger, T.L., Ashley, D.V.M., and Anderson, G.H. 1979. Effect of mineral mixture in the diet on protein intake regulation in the weanling rat. J. Nutr. 109:827‐831.
   Leshner, A.I., Collier, G.H., and Squibb, R.L. 1971. Dietary self‐selection at cold temperatures. Physiol. Behav. 7:1‐3.
   Leshner, A.I., Siegel, H.I. and Collier, G. 1972. Dietary self‐selection by pregnant and lactating rats. Physiol. Behav. 8:151‐154.
   Li, E.T.S. and Anderson, G.H. 1982. Meal composition influences subsequent food selection in the young rat. Physiol. Behav. 29:779‐783.
   MacDonald, D.G., Stern, J.A., and Hahn, W.W. 1963. Effects of differential housing and stress on diet selection, water intake and body weight in the rat. J. Appl. Physiol. 18:937‐942.
   Maggio, C.A., Yang, M., and Vasselli, J.R. 1984. Developmental aspects of macronutrient selection in genetically obese and lean rats. Nutr. Behav. 2:95‐110.
   Marks‐Kaufman, R. and Kanarek, R.B. 1980. Morphine selectively influences macronutrient intake in the rat. Pharmacol. Biochem. Behav. 12:427‐430.
   Mayer, J., Dickie, M.M., Bates, M.W., and Vitale, J.J. 1951. Free selection of nutrients by hereditarily obese mice. Science 113:745‐746.
   Melton, S. A., Hegsted, M., Keenan, M. J., Zhang, Y., Morris, S., Bulot, J. P. O'Neil, C. E., and Morris, G. S. 2000. Swimming eliminates the weight gain and abdominal fat associated with ovariectomy in the retired breeder rat despite high‐fat diet selection. Appetite 35:1‐7.
   Miller, G.D., Dimond, A.G., and Stern, J.S. 1994. Exercise reduces fat selection in female Sprague‐Dawley rats. Med. Sci. Sports Exerc. 23:1466‐1472.
   Mok, E., Paguette, M., and Thibault, L. 2000. Effect of quipazine, a selective 5HT3 agonist, on dietary self‐selection of different macronutrient diets in male and female rats. Appetite 34:313‐325.
   Morris, P. and Anderson, G.H. 1986. The effects of early dietary experience on subsequent protein selection in the rat. Physiol. Behav. 36:271‐276.
   Orthen‐Gambill, N. and Kanarek, R.B. 1982. Differential effects of amphetamine and fenfluramine on dietary self‐selection in rats. Pharmacol. Biochem. Behav. 16:303‐309.
   Oudot, F, Larue‐Achagiotis, C., Anton, G., and Verger, P. 1996. Modifications in dietary self‐selection specifically attributed to voluntary wheel running and exercise training in the rat. Physiol. Behav. 59:1123‐1128.
   Richter, C.P. 1943. Total self‐regulatory functions in animals and human beings. Harvey Lecture Series 38:63‐103.
   Richter, C.P. and Schmidt, E.C.H. Jr. 1941. Increased fat intake and decreased carbohydrate intake of pancretectomized rats. Endocrinology 28:179‐192.
   Richter, C.P., Holt, L.E., and Barelare, B. 1938. Nutritional requirements for normal growth and reproduction in rats studied by the self‐selection method. Am. J. Physiol. 122:734‐744.
   Ritter, S., Ritter, J.B., and Cromer, L. 1999. 2‐deoxy‐D‐glucose and mercaptoacetate induce different patterns of macronutrient ingestion. Physiol. Behav. 66:709‐715.
   Romsos, D.R. and Ferguson, D. 1982. Self‐selected intake of carbohydrate, fat and protein by obese (ob/ob) and lean mice. Physiol. Behav. 28:301‐305.
   Sclafani, A. and Aravich, P.F. 1983. Macronutrient self‐selection in three forms of hypothalamic obesity. Am. J. Physiol. 244:R686‐694.
   Scott, E.M. 1946. Self‐selection of diets. I. Selection of purified components. J. Nutr. 31:397‐406.
   Scott, E.M. and Quint, E. 1946. Self‐selection diet. IV. Appetite for protein. J. Nutr. 32:293‐301.
   Shor‐Posner, G., Ian, C., Brennan, G., Cohn, T., Moy, H., Ning, A., and Leibowitz, S.F. 1991. Self‐selecting albino rats exhibit differential preferences for pure macronutrient diets: Characterizations of three subpopulations. Physiol. Behav. 50:1187‐1195.
   Simpson, S.J. and Raubenheimer, D. 1997. Geometric analysis of macronutrient selection in the rat. Appetite 28:201‐213.
   Smith, B.K., Berthoud, H‐R., York, D.A. and Bray, G.A. 1997. Differential effects of baseline macronutrient preferences on macronutrient selection after galanin, NPY and an overnight fast. Peptides 18:207‐211.
   Smith, B.K., York, D.A., and Bray, G.A. 1998. Chronic D‐fenfluramine treatment reduces fat intake independent of macronutrient preference. Pharmacol. Biochem. Behav. 60:105‐114.
   Smith, B. K., Andrews, P. K., and West, D. 2000. Macronutrient diet selection in thirteen mouse strains. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278: R797‐R805.
   Svec, F. and Porter, J. 1996. Effect of DHEA on macronutrient selection by Zucker rats. Physiol. Behav. 59:721‐727.
   Tepper, B.J. and Kanarek, R.B. 1985. Dietary self‐selection patterns of rats with mild diabetes. J. Nutr. 115:699‐709.
   Thibault, L. and Booth, D.A. 1999. Macronutrient‐specific dietary selection in rodents and its neural bases. Neurosci. Biobehav. Rev. 23:457‐528.
   Thouzeau, C., Le Maho, Y., and Larue‐Achagiotis, C. 1995. Refeeding in fasted rats: Dietary self‐selection according to metabolic status. Physiol. Behav. 58:1051‐1058.
   Veyrat‐Durebex, C. and Alliot, J. 1997. Changes in pattern of macronutrient intake during aging in male and female rats. Physiol. Behav. 62:1273‐1278.
   White, P.J., Cybulski, K.A., Primus, R., Johnson, D.F., Collier, G.H. and Wagner, G.C. 1988. Changes in macronutrient selection as a function of dietary tryptophan. Physiol. Behav. 43:73‐77.
   Wurtman, J.J. and Wurtman, R.J. 1977. Fenfluramine and fluoxetine spare protein consumption while suppressing caloric intake by rats. Science 198:1178‐1180.
Key References
   Berthoud, H.‐R. and Seeley, R.J. (eds.) 2000. Neural and Metabolic Control of Macronutrient Selection. CRC Press, Boca Raton, Fla.
  This book contains 32 chapters describing recent research examining the effects of a variety of variables on macronutrient selection in experimental animals and human subjects.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library