Motor Coordination and Balance in Rodents

Rebecca J. Carter1, Jennifer Morton1, Stephen B. Dunnett2

1 University of Cambridge, Cambridge, United Kingdom, 2 Cardiff University, Cardiff, United Kingdom
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.12
DOI:  10.1002/0471142301.ns0812s15
Online Posting Date:  August, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Measurement of motor coordination and balance can be used not only to assess the effect of drugs or other experimental manipulations on mice and rats, but also to characterize the motor phenotype of transgenic or knock‐out animals. Three well established and widely used protocols for measuring motor coordination and balance in mice and rats (rotarod, beam walking and footprint analysis) are described in this unit. The tests can be used equally well for rats and mice, and have been used both for the phenotypic characterization of transgenic mice and for evaluating the effects of lesions and aging in rats. The protocols are described in the primary context of testing mice, but modifications of the test apparatus or variations in the test parameters for assessment of rats are noted.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Assessing Balance Using a Rotarod
  • Basic Protocol 2: Beam Walking
  • Basic Protocol 3: Footprint Analysis
  • Support Protocol 1: Data Analysis
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Assessing Balance Using a Rotarod

  Materials
  • Male or female mice
  • 70% (v/v) ethanol
  • Rotarod apparatus (e.g., AccuScan Instruments, Biotech Instruments, Columbus Instruments, Letica Scientific Instruments, San Diego Instruments, Stoelting, Ugo Basile Biological Research Apparatus) with appropriate rotating cylinder for mice (diameter ∼30 mm) or rats (diameter ∼70 mm)

Basic Protocol 2: Beam Walking

  • Beams: 1‐m strips of smooth wood with small, medium, and large square (i.e., 5, 12, and 28 mm wide) and round (i.e., 11, 17, and 28 mm in diameter) cross‐sections
  • Narrow support stand to hold up the start section of the raised beam (1.5‐cm cross‐section, 50 cm high)
  • Goal box (20 cm on each side, with a 4 × 5–cm entrance hole) secured on a narrow support stand (3 cm cross‐section, 50 cm high)
  • Two 60‐watt (W) desk lamps
  • Video camera, tripod, and blank video tapes

Basic Protocol 3: Footprint Analysis

  • Nontoxic paints in two contrasting colors (e.g., orange and purple)
  • Open‐top runway (for mice: 50 cm long, 10 cm wide, with walls 10 cm high; for rats: 100 cm long, 10 cm wide, with walls 20 cm high), brightly illuminated from above
  • Enclosed goal box (20 cm square, with a 4 × 5–cm entrance hole)
  • White paper (A3 size: 29.7 × 42 cm)
  • Fine paint brushes
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Alexis, N.E., Dietrich, W.D., Green, E.J., Prado, R., and Watson, B.D. 1995. Nonocclusive common carotid‐artery thrombosis in the rat results in reversible sensorimotor and cognitive‐behavioral deficits. Stroke 26:2338‐2346.
   Ba, A. and Seri, B.V. 1995. Psychomotor functions in developing rats: Ontogenetic approach to structure‐function relationships. Neurosci. Biobehav. Rev. 19:413‐425.
   Boyeson, M.G., Callister, T.R., and Cavazos, J.E. 1992. Biochemical and behavioral effects of a sensorimotor cortex injury in rats pretreated with the noradrenergic neurotoxin DSP‐4. Behav. Neurosci. 106:964‐973.
   Carter, R.J., Lione, L.A., Humby, T., Mangiarini, L., Mahal, A., Bates, G.P., Morton, A.J., and Dunnett, S.B. 1999. Characterization of progressive motor deficits in mice transgenic for the human Huntington's disease mutation. J. Neurosci. 19:3248‐3257.
   Chapillon, P., Lalonde, R., Jones, N., and Caston, J. 1998. Early development of synchronized walking on the rotorod in rats: Effects of training and handling. Behav. Brain Res. 93:77‐81.
   Clarke, K.A. and Still, J. 1999. Gait analysis in the mouse. Physiol. Behav. 66:723‐729.
   Dluzen, D.E., Liu, B., Chen, C.Y., and DiCarlo, S.E. 1995. Daily spontaneous running alters behavioral and neurochemical indexes of nigrostriatal function. J. Appl. Physiol. 78:1219‐1224.
   Dunham, N.W. and Miya, T.S. 1957. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharmac. Assoc. Sci. Ed. 46:208‐209.
   Dunn, R.W., Carlezon, W.A., and Corbett, R. 1991. Preclinical anxiolytic versus antipsychotic profiles of the 5‐HT3 antagonists ondanstron, zacopride,3‐alpha‐tropanyl‐1H‐indole‐3‐carboxylic acid ester, and 1‐alpha‐H,3‐alpha‐5‐tropan‐3‐YL‐3,5‐dichlorobenzoate. Drug Dev. Res. 23:289‐300.
   Feeney, D.M., Gonzalez, A.M., and Law, W.A. 1982. Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. Science 217:855‐857.
   Fentress, J.C. and Bolivar, V.J. 1996. Developmental aspects of movement sequences in mammals. In Measuring Movement and Locomotion: From Invertebrates to Humans (K.P. Ossenkopp, M. Kavaliers, and P.R. Sanberg, eds.) pp. 95‐114. R.G. Landes, Austin, Tex.
   Fish, F.E. 1996. Measurement of swimming kinematics in small terrestrial mammals. In Measuring Movement and Locomotion: From Invertebrates to Humans (K.P. Ossenkopp, M. Kavaliers, and P.R. Sanberg, eds.) pp. 171‐188. R.G. Landes, Austin, Tex.
   Gage, F.H., Dunnett, S.B., and Björklund, A. 1984. Spatial learning and motor deficits in aged rats. Neurobiol. Aging 5:43‐48.
   Gentile, A.M., Green, S., Neiburgs, A., Schmelzer, W., and Stein, D.G. 1978. Disruption and recovery of locomotor and manipulatory behaviour following cortical lesions in rats. Behav. Biol. 22:417‐455.
   Golani, I. 1976. Homeostatic motor processes in mammalian interaction: A choreography of display. In Perspectives in Ethology, Vol. 2 (P.P.G. Bateson and P.H. Klopfer, eds.) pp. 69‐134. Plenum Press, New York.
   Golani, I., Wolgin, D.L., and Teitelbaum, P. 1979. A proposed natural geometry of recovery from akinesia in the lateral hypothalamic rat. Brain Res. 164:237‐267.
   Goldstein, L.B. and Davis, J.N. 1990a. Beam‐walking in rats: Studies towards developing an animal model of functional recovery after brain injury. J. Neurosci. Methods 31:101‐107.
   Goldstein, L.B. and Davis, J.N. 1990b. Influence of lesion size and location on amphetamine facilitated recovery of beam walking in rats. Behav. Neurosci. 104:320‐327.
   Jones, B.J. and Roberts, D.J. 1968. The quantitative measurement of motor inco‐ordination in naive mice using an accelerating rotarod. J. Pharm. Pharmacol. 20:302‐304.
   Kinnard, W.J. and Carr, C.J. 1957. A preliminary procedure for the evaluation of central nervous system depressants. J. Pharmacol. Exp. Ther. 121:354‐361.
   Klapdor, K., Dulfer, B.G., Hammann, A., and van der Staay, F.J. 1997. A low‐cost method to analyse footprint patterns. J. Neurosci. Methods 75:49‐54.
   Klein, R., Silos‐Santiago, I., Smeyne, R.J., Lira, S.A., Brambilla, R., Bryant, S., Zhang, L., Snider, W.D., and Barbacid, M. 1994. Disruption of the neurotrophin‐3 receptor gene trkC eliminates Ia muscle afferents and results in abnormal movements. Nature 368:249‐251.
   Kuhn, P.L., Petroulakis, E., Zazanis, G.A., and McKinnon, R.D. 199595. Motor function analysis of myelin mutant mice using a rotarod. Int. J. Dev. Neurosci. 13:715‐722.
   Majchrzak, M., Brailowsky, S., and Will, B. 1992. Chronic infusion of GABA into the nucleus basalis magnocellularis or frontal cortex of rats: A behavioral and histological study. Exp. Brain Res. 88:531‐540.
   Marshall, J.F. and Berrios, N. 1979. Movement disorders of aged rats: Reversal by dopamine receptor stimulation. Science 206:477‐479.
   Matsuura, K., Kabuto, H., Makino, H., and Ogawa, N. 1997. Pole test is a useful method for evaluating the mouse movement disorder caused by striatal dopamine depletion. J. Neurosci. Methods 73:45‐48.
   Miklyaeva, E.I., Martens, D.J., and Whishaw, I.Q. 1995. Impairments and compensatory adjustments in spontaneous movement after unilateral dopamine depletion in rats. Brain Res. 681:23‐40.
   Ohlsson, A.L. and Johansson, B.B. 1995. Environment influences functional outcome of cerebral infarction in rats. Stroke 26:644‐649.
   Rohlf, F.J. and Sokal, R.R. 1995. Statistical Tables. Freeman, New York.
   Rozas, G., Guerra, M.J., and Labandeira‐Garcia, J.L. 1997. An automated rotarod method for quantitative drug‐free evaluation of overall motor deficits in rat models of parkinsonism. Brain Res. Prot. 2:75‐84.
   Schallert, T., Whishaw, I.Q., Ramirez, V.D., and Teitelbaum, P. 1978. Compulsive, abnormal walking caused by anticholinergics in akinetic, 6‐hydroxydopamine‐treated rats. Science 199:1461‐1463.
   Soblosky, J.S., Matthews, M.A., Davidson, J.F., Tabor, S.L., and Carey, M.E. 1996. Traumatic brain injury of the forelimb and hindlimb sensorimotor areas in the rat: Physiological, histological and behavioral correlates. Behav. Brain Res. 79:79‐92.
   Sokal, R.R. and Rohlf, F.J. 1994. Biometry. Freeman, New York.
   Steinpreis, R.E., Anders, K.A., Branda, E.M., and Kruschel, C.K. 1999. The effects of atypical antipsychotics and phencyclidine (PCP) on rotorod performance. Pharmacol. Biochem. Behav. 63:387‐394.
   Szewczak, M.R., Corbett, R., Rush, D.K., Wilmot, C.A., Conway, P.G., Strupczewski, J.T., and Cornfeldt, M. 1995. The pharmacological profile of iloperidone, a novel atypical antipsychotic agent. J. Pharmacol. Exp. Ther. 274:1404‐1413.
   Walker, J.L., Resig, P., Guarnieri, S., Sisken, B.F., and Evans, J.M. 1994. Improved footprint analysis using video recording to assess functional recovery following injury to the rat sciatic nerve. Rest. Neurol. Neurosci. 6:189‐193.
   Wallace, J.E., Krauter, E.E., and Campbell, B.A. 1980. Motor and reflexive behavior in the aging rat. J. Gerontol. 35:364‐370.
   Winer, B.J., Brown, D.R., and Michels, K.M. 1991. Statistical Principles in Experimental Design. McGraw‐Hill, New York.
Key Reference
   Ossenkopp, K.P., Kavaliers, M., and Sanberg, P.R. (eds.) 1996. Measuring Movement and Locomotion: From Invertebrates to Humans. R.G. Landes, Austin, Tex.
  Provides a good general overview of different strategies for movement analysis for all species. Less suitable for detailed accounts of individual methods.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library