Olfactometry with Mice

Burton Slotnick1, Diego Restrepo2

1 University of South Florida, Tampa, Florida, 2 University of Colorado at Denver and Health Sciences Center, Denver, Colorado
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.20
DOI:  10.1002/0471142301.ns0820s33
Online Posting Date:  November, 2005
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


A computer‐controlled, multiple‐channel odor generator, operant test chamber, and discrimination training procedure for mice are described. The odor generator allows controlled presentation of any one or combinations of eight odors to an odor‐sampling port that contains a liquid reinforcement delivery tube that also serves to detect responses. A modified discrete trial operant conditioning procedure provides measures of both response accuracy and response rate during anticipation of stimulus delivery and in the presence of two different odor stimuli. Results from numerous experiments demonstrate that, with these methods, mice reliably and rapidly acquire odor detection and a variety of odor‐discrimination tasks, and that response rate in the presence of the odor reflects the incentive motivation of stimuli that are or are not associated with reward.

Keywords: Olfactometer; mouse; odor detection; odor discrimination

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Olfactometry Testing in MICE
  • Support Protocol 1: Construction of an Olfactometer for MICE
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: Olfactometry Testing in MICE

  • Subjects: adult (2‐ to 8‐month‐old) male and female mice
  • Pelleted mouse chow
  • Glycerol saturated with NaCl
  • Odorant(s) to be tested
  • 95% ethanol
  • Standard (26 × 16 × 12–cm) plastic mouse cages
  • Mouse olfactometer with operant chamber and software (see Support Protocol)
  • 50°C stainless steel–lined oven
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Beauchamp, G.K., Yamazaki, K., Wysocki, C.J., Slotnick, B.M., Thomas, L., and Boyse, E.A. 1985. Chemosensory recognition of mouse major histocompatibility types by another species. Proc. Natl. Acad. Sci. U.S.A. 82:4186‐4188.
   Belluscio, L., Gold, G.H., Nemes, A., and Axel, R. 1998. Mice deficient for Golf are anosmic. Neuron 20:69‐81.
   Bodyak, N. and Slotnick, B.M. 1999. Performance of mice in an automated olfactometer: Odor detection, discrimination and odor memory. Chem. Senses 24:637‐645.
   Bozza, T.C. and Mombaerts, P. 2001. Olfactory coding: Revealing intrinsic representations. Curr. Biol. 11:R687‐R690.
   Brown, R.E., Schellinck, H.M., and West, A.M. 1996. The influence of dietary and genetic cues on the ability of rats to discriminate between the urinary odors of MHC‐congenic mice. Physiol. Behav. 60:365‐372.
   Brunet, L.J., Gold, G.H., and Ngai, J. 1996. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide‐gated cation channel. Neuron 17:681‐693.
   Buck, L.B. 2000. The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611‐618.
   Buck, L.B., and Axel, R. 1991. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell 65:175‐187.
   Christensen, T.A. and White, J. 1999. Representation of olfactory information in the brain. In Neurobiology of Taste and Smell (T.E. Finger, D. Restrepo, and W.L. Silver eds.) John Wiley and Sons, New York.
   Cometto‐Muñiz, J.E., Cain. W.S., and Abraham, M.H. 1998. Nasal pungency and odor of homologous aldehydes and carboxylic acids. Exp. Brain Res. 118:180‐188.
   Cometto‐Muñiz, J.E., Cain, W.S., Abraham, M.H., and Gola, J.M. 1999. Chemosensory detectability of 1‐butanol and 2‐heptanone singly and in binary mixtures. Physiol. Behav. 67:269‐276.
   Cometto‐Muñiz, J.E., Cain, W.S., Abraham, M.H., and Gola, J.M. 2001. Ocular and nasal trigeminal detection of butyl acetate and toluene presented singly and in mixtures. Toxicol. Sci. 63:233‐244.
   Cometto‐Muñiz, J.E., Cain, W.S., Abraham, M.H., and Gola, J.M. 2002. Psychometric functions for the olfactory and trigeminal detectability of butyl acetate and toluene. J. Appl. Toxicol. 22:25‐30.
   Cometto‐Muñiz, J.E., Cain, W.S., Abraham, M.H. 2003. Quantification of chemical vapors in chemosensory research. Chem. Senses 28:467‐477.
   Dhallan, R.S., Yau, K‐Y., Schrader, K.A., and Reed, R.R. 1990. Primary structure and functional expression of a cyclic nucleotide‐activated channel from olfactory neurons. Nature 347:184‐187.
   Dickinson, A. and Pearce, J.M. 1997. Inhibitory interactions between appetitive and aversive stimuli. Psychol. Bull. 84:690‐711.
   Dinsmoor, J.A. 1952. The effect of hunger on discriminated responding. J. Abnorm. Soc. Psychol. 47:67‐72.
   Field, B. and Slotnick, B.M. 1987. An inexpensive multi‐purpose amplifier for behavioral studies. Physiol. Behav. 40:127‐129.
   Firestein, S. 2001. How the olfactory system makes sense of scents. Nature 413:211‐218.
   Henton, W.W. 1969. Conditioned suppression to odorous stimuli in pigeons. J. Exp. Anal. Behav. 12:175‐185.
   Henton, W.W., Smith, J.C., and Tucker, D. 1966. Odor discrimination in pigeons. Science 153:1138‐1139.
   Johnson, B.A., Ho, S.L., Xu, Z., Yiahan, J.S., Yip, S., Hingco, E.E., and Leon, M. 2002. Functional mapping of the rat olfactory bulb using diverse odorants reveals modular responses to functional groups and hydrocarbon structural features. J. Comp. Neurol. 449:180‐194.
   Jones, D.T. and Reed, R.R. 1989. Golf: An olfactory neuron specific‐G protein involved in odorant signal transduction. Science 244:790‐795.
   Kauer, J. and White, J. 2001. Imaging and coding in the olfactory system. Annu. Rev. Neurosci. 24:963‐979.
   Krestel, D., Passe, D., Smith, J.C., and Johnson, L. 1984. Behavioral determination of olfactory thresholds to amyl acetate in dogs. Physiol. Behav. 8:169‐174.
   Laing, D.L., Panhuber, H., and Slotnick, B.M. 1989. Odor masking in the rat. Physiol. Behav. 45:689‐694.
   Larson, J. and Sieprawska, D. 2002. Automated study of simultaneous‐cue olfactory discrimination learning in adult mice. Behav. Neurosci. 116:588‐599.
   Lin, D.M., Wang, F., Lowe, G., Gold, G.H., Axel, R., Ngai, J., and Brunet, L. 2000. Formation of precise connections in the olfactory bulb occurs in the absence of odorant‐evoked neuronal activity. Neuron 26:69‐80.
   Lin, W., Arellano, J., Slotnick, B., and Restrepo, D. 2004. Odors detected by mice deficient in olfactory cyclic nucleotide‐gated channel subunit A2 stimulate the main olfactory system. J. Neurosci. 24:3703‐3710.
   Ma, M.H. and Shepherd, G.M. 2000. Functional mosaic organization of mouse olfactory receptor neurons. Proc. Natl. Acad. Sci. U.S.A. 97:12869‐12874.
   Margolis, F.L. 1980. A marker protein for the olfactory chemoreceptor neuron. In Proteins of the Nervous System (R.A. Bradshaw and D.M. Schneider, eds.) pp. 59‐84. Raven Press, New York.
   Meister, M. and Bonhoeffer, T. 2001. Tuning and topography in an odor map on the rat olfactory bulb. J. Neurosci. 15:1351‐1360.
   Mombaerts, P. 1999. Molecular biology of odorant receptors in vertebrates. Annu. Rev. Neurosci. 22:487‐509.
   Munger, S.D., Lane, A.P., Zhong, H.N., Leinders‐Zufall, T., Yau, K.W., Zufall, F., and Reed, R.R. 2001. Central role of the CNGA4 channel subunit in Ca2+‐calmodulin‐dependent odor adaptation. Science 294:2172‐2175.
   Ressler, K.J., Sullivan, S.L., and Buck, L.B. 1994. Information coding in the olfactory system: Evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:1245‐1255.
   Rubin, B.D. and Katz, L.C. 1999. Optical imaging of odorant representations in the mammalian olfactory bulb. Neuron 23:499‐511.
   Schaefer, M.L., Yamazaki, K., Osada, K., Restrepo, D., and Beauchamp, G.K. 2002. Olfactory fingerprints for MHC‐determined body odors. II. Relationship among odor maps, genetics, odor composition and behavior. J. Neurosci. 22:9513‐9521.
   Schild, D. and Restrepo, D. 1998. Transduction mechanisms in vertebrate olfactory receptor cells. Physiol. Rev. 78:429‐466.
   Slotnick, B. 2001. Animal cognition and the rat olfactory system. Trends Cogn. Sci. 5:216‐222.
   Slotnick, B.M. and Schellinck, H. 2002. Methods in olfactory research with rodents. In Frontiers and Methods in Chemosenses (S.A. Simon and M. Nicolelis eds.) pp. 21‐61. CRC Press, Boca Raton, Fla.
   Slotnick, B.M. and Schoonover, F.W. 1984. Olfactory thresholds in normal and unilaterally bulbectomized rats. Chem. Senses 9:325‐340.
   Slotnick, B.M., Hanford, L., and Hodos, W. 2000. Can rats acquire an olfactory learning set? J. Exp. Psychol. Anim. Behav. Process. 26:399‐415.
   Wachowiak, M. and Cohen, L.B. 2001. Representation of odorants by receptor neuron input to the mouse olfactory bulb. Neuron 32:723‐735.
   Walker, J.C. and O'Connell, R.J. 1986. Computerized odor psychophysical testing in mice. Chem. Senses 11:439‐453.
   Wise, P.M. and Cain, W.S. 2000. Latency and accuracy of discriminations of odor quality between binary mixtures and their components. Chem. Senses 25:247‐265.
   Wong, S.T., Trinh, K., Hacker, B., Chan, G.C., Lowe, G., Gagga, A., Xia, Z., Gold, G.H., and Storm, D.R. 2000. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27:487‐497.
   Xu, F., Greer, C.A., and Shepherd, G.M. 2000. Odor maps in the olfactory bulb. J. Comp. Neurol. 422:489‐495.
   Youngentob, S.L., Hornung, D.E., and Mozell, M.M. 1991. Determination of carbon dioxide detection thresholds in trained rats. Physiol. Behav. 49:21‐26.
   Youngentob, S.L., Schwob, J.E., Sheehe, P.R., and Youngentob, L.M. 1997. Odorant threshold following methyl bromide‐induced lesions of the olfactory epithelium. Physiol. Behav. 62:1241‐1252.
   Youngentob, S.L., Margolis, F.L., and Youngentob, L.M. 2001. OMP gene deletion results in an alteration in odorant quality perception. Behav Neurosci. 115:626‐631.
   Zufall, F. and Munger, S.D. 2001. From odor and pheromone transduction to the organization of the sense of smell. Trends Neurosci. 24:191‐193.
PDF or HTML at Wiley Online Library