Assessment of Cochlear Function in Mice: Distortion‐Product Otoacoustic Emissions

Glen K. Martin1, Barden B. Stagner2, Brenda L. Lonsbury‐Martin3

1 Jerry Pettis Memorial Veterans Medical Center and Loma Linda University, Loma Linda, California, 2 Jerry Pettis Memorial Veterans Medical Center, Loma Linda, California, 3 Loma Linda University, Loma Linda, California
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.21C
DOI:  10.1002/0471142301.ns0821cs34
Online Posting Date:  February, 2006
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Distortion‐product otoacoustic emissions (DPOAEs) can be measured in the ear canal following the presentation of two tones. These emissions are generated by the outer hair cells (OHCs) of the inner ear and they are reduced or absent when the OHCs are damaged by, for example, exposure to excessive noise or ototoxic drugs. Consequently, DPOAEs provide a powerful and noninvasive means to assess the robustness of OHC function. A detailed method is described for measuring DPOAEs to assess cochlear function in mice. Recommendations are given for the required equipment and instructions are presented for setting up a DPOAE system. Also, a protocol is outlined for measuring DPOAEs in mice and troubleshooting tips are provided. Examples of data analysis procedures following noise exposure in mice are included, as well. These methods are not only applicable to mice, but can be performed using essentially all small laboratory animals.

Keywords: distortion‐product otoacoustic emissions; cochlear function; mice; hearing

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Computer Control and DPOAE Measurement
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Computer Control and DPOAE Measurement

  Materials
  • Mice
  • Anesthesia (e.g., ketamine/xylazine, Avertin, or a gaseous anesthetic such as isoflurane; appendix 4B)
  • Two channel, low‐distortion frequency synthesizer (e.g., 33220A Function Generator, Agilent Technologies) or two‐channel computer soundcard (100 Hz to 60 kHz frequency range; e.g., LynxTWO, Lynx Studio Technology)
  • High‐frequency tweeters to produce pure tones from 100 Hz to at least 60 kHz (e.g., ES1/EC1 electrostatic speakers, Tucker‐Davis Technologies)
  • Low‐distortion amplifier for impedance‐matching speakers to sound sources (e.g., HB‐7 headphone buffer, Tucker‐Davis Technologies)
  • Programmable attenuator to adjust the levels of the two tones (e.g., PA5 programmable attenuator, Tucker‐Davis Technologies)
  • Specialized low‐noise microphone/amplifier for measuring ear‐canal sound pressure (e.g., ER‐10B+ emissions microphone, Etymotic Research) fitted with sound‐delivery tubes supplied by the vendor for delivering acoustic stimuli and an internal port for microphone pickup (DPOAE frequency range = 1 Hz to 35 kHz)
  • Sound‐delivery tubes to connect high‐frequency tweeters to microphone assembly (2‐mm i.d.)
  • Sound‐attenuation chamber: commercially available (Acoustic Systems or Industrial Acoustics Corporation) or laboratory‐made sound‐attenuation enclosure (see step )
  • Temperature‐controlled heating pad or heating table (e.g., Harvard Apparatus)
  • Spectrum analyzer (e.g., 35670A FFT dynamic signal analyzer, Agilent Technologies) or computer soundcard (e.g., LynxTWO, Lynx Studio Technology) with spectral analysis software (range = 1 Hz to at least 50 kHz)
  • 1/4‐in. high‐frequency microphone (e.g., type 4136 pressure microphone, Bruel & Kjaer) and associated preamplifier (range = 1 Hz to 100 kHz)
  • Sound calibrator (QC‐20 sound calibrator, Quest Technologies)
  • 1‐ml syringes
  • Teflon tape
  • Personal computer equipped with an instrument controller card (e.g., NI‐PC/104‐GPIB, National Instruments) to control the frequency synthesizers and spectrum analyzer for a stand‐alone setup or a soundcard with appropriate software to substitute for these instruments
  • Small pieces of silicon tubing to use as probe tips for the microphone assembly (ER3‐34 infant silicon tips, Etymotic Research)
  • Small, curved forceps
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

   Avan, P., Bonfils, P., Gilain, L., and Mom, T., 2003. Physiopathological significance of distortion‐product otoacoustic emissions at 2f1‐f2 produced by high‐ versus low‐level stimuli. J. Acoust. Soc. Am. 113:430‐441.
   Bekesy, G.V. 1960. Experiments in Hearing. McGraw Hill, New York.
   Brown, A.M. and Kemp, D.T. 1984. Suppressibility of the 2f1‐f2 stimulated acoustic emissions in gerbil and man. Hear. Res. 13:29‐37.
   Brownell, W.E. 1990. Outer hair cell electromotility and otoacoustic emissions. Ear Hear. 11:82‐92.
   Brownell, W.E., Bader, C.R., Bertrand, D., and Ribaupierre, Y. 1985. Evoked mechanical responses of isolated outer hair cells. Science 227:194‐196.
   Candreia, C., Martin, G.K., Stagner, B.B., and Lonsbury‐Martin, B.L. 2004. Distortion product otoacoustic emissions show exceptional resistance to noise exposure in MOLF/Ei mice. Hear. Res. 194:109‐117.
   Carvalho, S., Mom, T., Gilain, L., and Avan, P., 2004. Frequency specificity of distortion‐product otoacoustic emissions produced by high‐level tones despite inefficient cochlear electromechanical feedback. J. Acoust. Soc. Am. 116:1639‐1648.
   Davis, H. 1983. An active process in cochlear mechanics. Hear. Res. 9:79‐90.
   Fahey, P.F, Stagner, B.B., Lonsbury‐Martin, B.L., and Martin, G.K. 2000. Nonlinear interactions that could explain distortion product interference response areas. J. Acoust. Soc. Am. 108:1786‐1802.
   Frank, G. and Kossl, M. 1996. The acoustic two‐tone distortions 2f1‐f2 and f2‐f1 and their possible relation to changes in the operating point of the cochlear amplifier. Hear. Res. 98:104‐115.
   Harris, F.P., Lonsbury‐Martin, B.L., Stagner, B.B., Coats, A.C., and Martin, G.K. 1989. Acoustic distortion products in humans: Systematic changes in amplitudes as a function of f2/f1 ratio. J. Acoust. Soc. Am. 85:220‐229.
   Horner, K.C., Lenoir, M., and Bock, G.R., 1985. Distortion product otoacoustic emissions in hearing‐impaired mutant mice. J. Acoust. Soc. Am. 78:1603‐1611.
   Huang, J.M., Money, M.K., Berlin, C.I., and Keats, B.J. 1995. Auditory phenotyping of heterozygous sound‐responsive (+/dn) and deafness (dn/dn) mice. Hear. Res. 88:61‐64.
   Huang, J.M., Money, M.K., Berlin, C.I, and Keats, B.J. 1996. Phenotypic patterns of distortion product otoacoustic emission in inbred and F1 hybrid hearing mouse strains. Hear. Res. 98:18‐21.
   Huang, J.M., Berlin, C.I., Lin, S.T., and Keats, B.J., 1998. Low intensities and 1.3 ratio produce distortion product otoacoustic emissions which are larger in heterozygous (+/dn) than homozygous (+/+) mice. Hear. Res. 117:24‐30.
   Jimenez, A.M., Stagner, B.B., Martin, G.K., and Lonsbury‐Martin, B.L. 1999. Age‐related loss of distortion product otoacoustic emissions in four mouse strains. Hear. Res. 138:91‐105.
   Jimenez, A.M., Stagner, B.B., Martin, G.K., and Lonsbury‐Martin, B.L. 2001. Susceptibility of DPOAEs to sound overexposure in inbred mice with AHL. J. Assoc. Res. Otolaryngol. 2:233‐245.
   Kemp, D.T. 1978. Stimulated acoustic emissions from within the human auditory system. J. Acoust. Soc. Am. 64:1386‐1391.
   Kemp, D.T. 1979a. Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch. Otorhinolaryngol. 224:37‐45.
   Kemp, D.T. 1979b. The evoked cochlear mechanical response and the auditory microstructure—Evidence for a new element in cochlear mechanics. Scand. Audiol. 9:35‐47.
   Kemp, D.T. 2002. Exploring cochlear status with otoacoustic emissions: The potential for new clinical applications. In Otoacoustic Emissions: Clinical Applications (M.S. Robinette and T.J. Glattke, eds.) pp. 1‐47. Thieme, New York.
   Knight, R.D. and Kemp, D.T. 2000. Indications of different distortion product otoacoustic emission mechanisms from a detailed f1,f2 area study. J. Acoust. Soc. Am. 107:457‐473.
   Knight, R.D. and Kemp, D.T. 2001. Wave and place fixed DPOAE maps of the human ear. J. Acoust. Soc. Am. 109:1513‐1525.
   Kummer, P., Janssen, T., Hulin, P., and Arnold, W. 2000. Optimal L(1)‐L(2) primary tone level separation remains independent of test frequency in humans. Hear. Res. 146:47‐56.
   Liberman, M.C., Zuo, J., and Guinan, J.J. Jr. 2004. Otoacoustic emissions without somatic motility: Can stereocilia mechanics drive the mammalian cochlea? J. Acoust. Soc. Am. 116:1649‐1655.
   Lonsbury‐Martin, B.L., McCoy, M.J., Whitehead, M.L., and Martin, G.K. 1993. Clinical testing of distortion‐product otoacoustic emissions. Ear Hear. 14:11‐22.
   Lukashkin, A.N., Lukashkina, V.A., and Russell, I.J. 2002. One source for distortion product otoacoustic emissions generated by low‐ and high‐level primaries. J. Acoust. Soc. Am. 111:2740‐2748.
   Lukashkin, A.N., Lukashkina, V.A., Legan, P.K., Richardson, G.P., and Russell, I.J. 2004. Role of the tectorial membrane revealed by otoacoustic emissions recorded from wild‐type and transgenic Tecta(deltaENT/deltaENT) mice. J. Neurophysiol. 91:163‐171.
   Martin, G.K., Lonsbury‐Martin, B.L., Probst, R., Scheinin, S.A., and Coats, A.C. 1987. Acoustic distortion products in rabbit ear canal. II. Sites of origin revealed by suppression contours and pure‐tone exposures. Hear. Res. 28:191‐208.
   Martin, G.K., Jassir, D., Stagner, B.B., Whitehead, M.L., and Lonsbury‐Martin, B.L. 1998. Locus of generation for the 2f1‐f2 vs 2f2‐f1 distortion‐product otoacoustic emissions in normal‐hearing humans revealed by suppression tuning, onset latencies, and amplitude correlations. J. Acoust. Soc. Am. 103:1957‐1971.
   Mills, D.M., and Rubel, E.W. 1994. Variation of distortion product otoacoustic emissions with furosemide injection. Hear. Res. 77:183‐199.
   Mom, T., Bonfils, P., Gilain, L., and Avan, P. 2001. Origin of cubic difference tones generated by high‐intensity stimuli: Effect of ischemia and auditory fatigue on the gerbil cochlea. J. Acoust. Soc. Am. 110:1477‐1488.
   Ou, H.C., Harding, G.W., and Bohne, B.A. 2000. An anatomically based frequency‐place map for the mouse cochlea. Hear. Res. 145:123‐129.
   Parham, K. 1997. Distortion product otoacoustic emissions in the C57BL/6J mouse model of age‐related hearing loss. Hear. Res. 112:216‐234.
   Parham, K., Sun, X.M., and Kim, D.O. 1999. Distortion product otoacoustic emissions in the CBA/J mouse model of presbycusis. Hear. Res. 134:29‐38.
   Parham, K., Sun, X.M., and Kim, D.O. 2001. Noninvasive assessment of auditory function in mice: Auditory brainstem response and distortion product otoacoustic emissions. In Handbook of Mouse Auditory Research from Behavior to Molecular Biology (J.F. Willott, ed.) pp. 37‐58. CRC Press, New York.
   Pearce, M., Richter, C.P., and Cheatham, M.A. 2001. A reconsideration of sound calibration in the mouse. J. Neurosci. Methods 106:57‐67.
   Probst, R., Lonsbury‐Martin, B.L., and Martin, G.K. 1991. A review of otoacoustic emissions. J. Acoust. Soc. Am. 89:2027‐2067.
   Shera, C.A., and Guinan, J.J. Jr. 1999. Evoked otoacoustic emissions arise by two fundamentally different mechanisms: A taxonomy for mammalian OAEs. J. Acoust. Soc. Am. 105:782‐798.
   Sirjani, D.B., Salt, A.N., Gill, R.M., and Hale, S.A. 2004. The influence of transducer operating point on distortion generation in the cochlea. J. Acoust. Soc. Am. 115:1219‐1229.
   Sutton, L.A., Lonsbury‐Martin, B.L., Martin, G.K., and Whitehead, M.L. 1994. Sensitivity of distortion‐product otoacoustic emissions in humans to tonal over‐exposure: Time course of recovery and effects of lowering L2. Hear. Res. 75:161‐174.
   Vazquez, A.E., Luebke, A.E., Martin, G.K., and Lonsbury‐Martin, B.L. 2001. Temporary and permanent noise‐induced changes in distortion product otoacoustic emissions in CBA/CaJ mice. Hear. Res. 156:31‐43.
   Vazquez, A.E., Jimenez, A.M., Martin, G.K., Luebke, A.E., and Lonsbury‐Martin, B.L. 2004. Evaluating cochlear function and the effects of noise exposure in the B6.CAST+Ahl mouse with distortion product otoacoustic emissions. Hear. Res. 194:87‐96.
   Whitehead, M.L., McCoy, M.J., Lonsbury‐Martin, B.L., and Martin, G.K. 1995a. Dependence of distortion‐product otoacoustic emissions on primary levels in normal and impaired ears. I. Effects of decreasing L2 below L1. J. Acoust. Soc. Am. 97:2346‐2358.
   Whitehead, M.L., Stagner, B.B., Lonsbury‐Martin, B.L., and Martin, G.K. 1995b. Effects of ear‐canal standing waves on measurements of distortion‐product otoacoustic emissions. J. Acoust. Soc. Am. 98:3200‐3214.
   Whitehead, M.L., Stagner, B.B., McCoy, M.J., Lonsbury‐Martin, B.L., and Martin, G.K. 1995c. Dependence of distortion‐product otoacoustic emissions on primary levels in normal and impaired ears. II. Asymmetry in L1, L2 space. J. Acoust. Soc. Am. 97:2359‐2377.
   Whitehead, M.L., Lonsbury‐Martin, B.L., and Martin, G.K. 1992a. Relevance of animal models to the clinical application of otoacoustic emissions. Sem. Hear. 13:81‐101.
   Whitehead, M.L., Lonsbury‐Martin, B.L., and Martin, G.K. 1992b. Evidence for two discrete sources of 2f1‐f2 distortion‐product otoacoustic emission in rabbit. II: Differential physiological vulnerability. J. Acoust. Soc. Am. 92:2662‐2682.
   Yoshida, N. and Liberman, M.C. 2000. Sound conditioning reduces noise‐induced permanent threshold shift in mice. Hear. Res. 148:213‐219.
   Zheng, J., Madison, L.D., Oliver, D., Fakler, B., and Dallos, P. 2002. Prestin, the motor protein of outer hair cells. Audiol. Neurootol. 7:9‐12.
Key References
   Jimenez, et al., 1999. See above.
  Original peer‐reviewed published articles reporting many of the details itemized in the .
   Jimenez et al., 2001. See above.
  Current view of the generation and propagation of otoacoustic emissions.
   Kemp, 2002. See above.
  Original peer‐reviewed published articles reporting many of the details itemized in the .
   Parham, 1997. See above.
  Earlier review of research on DPOAEs in mice.
   Parham et al., 1999. See above.
   Parham et al., 2001. See above.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library