Modeling Appetitive Pavlovian‐Instrumental Interactions in Mice

Eoin C. O'Connor1, David N. Stephens1, Hans S. Crombag1

1 Behavioral and Clinical Neuroscience Research Group, School of Psychology, The University of Sussex, Brighton, East Sussex, United Kingdom
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.25
DOI:  10.1002/0471142301.ns0825s53
Online Posting Date:  October, 2010
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

In appetitive Pavlovian associative learning, a stimulus (conditioned stimulus, CS) that has been associated with the delivery of a reinforcing event (unconditioned stimulus, US; e.g., food) can subsequently elicit or modulate goal‐directed instrumental behaviors. For example, a Pavlovian CS can serve to reinforce (novel) instrumental behavior (conditioned reinforcement or CRf), or it can energize and potentiate ongoing instrumental responses when presented non‐contingently (Pavlovian‐instrumental transfer or PIT). Notably, these different effects of a Pavlovian CS on instrumental behavior are mediated by dissociable psychological and neurobiological mechanisms. Given the critical role that Pavlovian‐instrumental interactions play in regulating motivated behavior and maladaptive manifestations of motivation such as eating disorders and addictions, understanding the underlying psychological and neurobiological mechanisms will be important. This unit describes behavioral protocols that produce robust and reliable PIT and CRf in mice and that open the door for future studies using transgenic approaches into the molecular mechanisms underlying associative learning and motivation. Curr. Protoc. Neurosci. 53:8.25.1‐8.25.27. © 2010 by John Wiley & Sons, Inc.

Keywords: associative learning; behavior; classical conditioning; operant conditioning; incentive learning; reward; transgenic; knockout; mouse

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Pavlovian‐Instrumental Transfer
  • Alternate Protocol 1: Conditioned Reinforcement
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Pavlovian‐Instrumental Transfer

  Materials
  • 20% (w/v) sucrose solution made fresh daily (or 14 mg dust‐free precision pellets for pellet dispenser; e.g., Bio‐serve)
  • 70% ethanol
  • Eight to twelve mice per experimental group (e.g., male, at least 8 weeks old, C57BL/6J mice; Jackson Laboratories)
  • A personal computer running MS Windows, Delphi compiler, and MED‐PC IV, and interfaced with the conditioning chambers
  • Investigator‐programmed State Notation procedures, written using a plain text (txt) editing (e.g., Windows Notepad or Mac OS Textedit) and Delphi compiler software
  • Conditioning chambers (Med‐Associates)
  • 20‐ml plastic syringes and dull 16‐G hypodermic needles
  • Single syringe liquid infusion pumps (PHM‐100; Razel Scientific Instruments/Med‐Associates) and hypodermic tubing (polyethylene (PE) or Tygon)
  • Two retractable levers (ENV‐310M; Med‐Associates)
  • Liquid delivery receptacle (ENV‐303LP; Med‐Associates)
  • Auditory stimulus module(s) to present 3 kHz tone or white‐noise (ANL‐926; Med‐Associates)
  • Decibel (dB) meter (e.g., Radio Shack) for calibration of auditory stimuli (10 dB above background)

Alternate Protocol 1: Conditioned Reinforcement

  • Two operant nose‐poke modules (Med‐Associates)
  • Investigator‐programmed State Notation procedures, written using Med‐PC IV software, for experimental variable control and data acquisition
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Amico, J.A., Vollmer, R.R., Cai, H.M., Miedlar, J.A., and Rinaman, L. 2005. Enhanced initial and sustained intake of sucrose solution in mice with an oxytocin gene deletion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 289:R1798‐R1806.
   Azrin, N.H. and Hake, D.F. 1969. Positive conditioned suppression: Conditioned suppression using positive reinforcers as the unconditioned stimuli. J. Exp. Anal. Behav. 12:167‐173.
   Blundell, P., Hall, G., and Killcross, S. 2001. Lesions of the basolateral amygdala disrupt selective aspects of reinforcer representation in rats. J. Neurosci. 21:9018‐9026.
   Brown, P.L. and Jenkins, H.M. 1968. Auto‐shaping of the pigeon's key‐peck. J. Exp. Anal. Behav. 11:1‐8.
   Brown, R.E. 2007. Behavioural phenotyping of transgenic mice. Can. J. Exp. Psychol. 61:328‐344.
   Burke, K.A., Franz, T.M., Miller, D.N., and Schoenbaum, G. 2007. Conditioned reinforcement can be mediated by either outcome‐specific or general affective representations. Front. Integr. Neurosci. 1:2.
   Burke, K.A., Franz, T.M., Miller, D.N., and Schoenbaum, G. 2008. The role of the orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature 454:340‐344.
   Cador, M., Robbins, T.W., and Everitt, B.J. 1989. Involvement of the amygdala in stimulus‐reward associations: Interaction with the ventral striatum. Neuroscience 30:77‐86.
   Childress, A.R., Hole, A.V., Ehrman, R.N., Robbins, S.J., McLellan, A.T., and O'Brien, C.P. 1993. Cue reactivity and cue reactivity interventions in drug dependence. NIDA Res. Monogr. 137:73‐95.
   Colwill, R.M. and Rescorla, R.A. 1988. Associations between the discriminative stimulus and the reinforcer in instrumental learning. J. Exp. Anal. Behav. 14:164‐165.
   Corbit, L.H. and Balleine, B.W. 2005. Double dissociation of basolateral and central amygdala lesions on the general and outcome‐specific forms of Pavlovian‐instrumental transfer. J. Neurosci. 25:962‐970.
   Corbit, L.H., Muir, J.L., and Balleine, B.W. 2001. The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. J. Neurosci. 21:3251‐3260.
   Corbit, L.H., Janak, P.H., and Balleine, B.W. 2007. General and outcome‐specific forms of Pavlovian‐instrumental transfer: The effect of shifts in motivational state and inactivation of the ventral tegmental area. Eur. J. Neurosci. 26:3141‐3149.
   Crawley, J.N. 2000. What's wrong with my mouse? Behavioural phenotyping of transgenic and knockout mice. Wiley‐Liss, New York.
   Crombag, H.S., Galarce, E.M., and Holland, P.C. 2008a. Pavlovian influences on goal‐directed behavior in mice: The role of cue‐reinforcer relations. Learn. Mem. 15:299‐303.
   Crombag, H.S., Sutton, J.M., Takamiya, K., Holland, P.C., Gallagher, M., and Huganir, R.L. 2008b. A role for alpha‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionic acid GluR1 phosphorylation in the modulatory effects of appetitive reward cues on goal‐directed behavior. Eur. J. Neurosci. 27:3284‐3291.
   Crombag, H.S., Sutton, J.M., Takamiya, K., Lee, H.K., Holland, P.C., Gallagher, M., and Huganir, R.L. 2008c. A necessary role for GluR1 serine 831 phosphorylation in appetitive incentive learning. Behav. Brain Res. 191:178‐183.
   Crusio, W.E., Goldowitz, D., Holmes, A., and Wolfer, D. 2009. Standards for the publication of mouse mutant studies. Genes Brain Behav. 8:1‐4.
   Delamater, A.R. and Oakeshott, S. 2007. Learning about multiple attributes of reward in Pavlovian conditioning. Ann. N.Y. Acad. Sci. 1104:1‐20.
   Delamater, A.R. and Holland, P.C. 2008. The influence of CS‐US interval on several different indices of learning in appetitive conditioning. J. Exp. Psychol. Anim. Behav. Process. 34:202‐222.
   Dickinson, A. and Nicholas, D.J. 1983. Irrelevant incentive learning during instrumental conditioning: The role of the drive‐reinforcer and response‐reinforcer relationships. Q. J. Exp. Psychol. B 35:249‐263.
   Dickinson, A. and Balleine, B. 1994. Motivational control of goal‐directed action. Anim. Learn. Behav. 22:1‐18.
   Dickinson, A., Nicholas, D.J., and Adams, C.D. 1983. The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. Q. J. Exp. Psychol. B 35:35‐51.
   Dickinson, A., Balleine, B., Watt, A., Gonzalez, F., and Boakes, R.A. 1995. Motivational control after extended instrumental training. Anim. Learn. Behav. 23:197‐206.
   Dickinson, A., Smith, J., and Mirenowicz, J. 2000. Dissociation of Pavlovian and instrumental incentive learning under dopamine antagonists. Behav. Neurosci. 114:468‐483.
   El‐Amamy, H. and Holland, P.C. 2007. Dissociable effects of disconnecting amygdala central nucleus from the ventral tegmental area or substantia nigra on learned orienting and incentive motivation. Eur. J. Neurosci. 25:1557‐1567.
   Estes, W.K. 1948. Discriminative conditioning; effects of a Pavlovian conditioned stimulus upon a subsequently established operant response. J. Exp. Psychol. 38:173‐177.
   Everitt, B.J. and Robbins, T.W. 2005. Neural systems of reinforcement for drug addiction: From actions to habits to compulsion. Nat. Neurosci. 8:1481‐1489.
   Everitt, B.J., Cardinal, R.N., Hall, G., Parkinson, J.A., and Robbins, T.W. 2000. Differential involvement of amygdala subsystems in appetitive conditioning and drug addiction. In The Amygdala: A Functional Analysis (J.P. Aggleton, ed.) pp. 353‐390. Oxford University Press, New York.
   Ferster, C.B. and Skinner, B.F. 1957. Schedules of Reinforcement. Appleton‐Century‐Crofts, New York.
   Galarce, E.M., Crombag, H.S., and Holland, P.C. 2007. Reinforcer‐specificity of appetitive and consummatory behavior of rats after Pavlovian conditioning with food reinforcers. Physiol. Behav. 91:95‐105.
   Hall, J., Parkinson, J.A., Connor, T.M., Dickinson, A., and Everitt, B.J. 2001. Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci. 13:1984‐1992.
   Holland, P.C. 1977. Conditioned stimulus as a determinant of the form of the Pavlovian conditioned response. J. Exp. Psychol. Anim. Behav. Process. 3:77‐104.
   Holland, P.C. 1980a. Influence of visual conditioned stimulus characteristics on the form of Pavlovian appetitive conditioned responding in rats. J. Exp. Psychol. Anim. Behav. Process. 6:81‐97.
   Holland, P.C. 1980b. CS‐US interval as a determinant of the form of Pavlovian appetitive conditioned responses. J. Exp. Psychol. Anim. Behav. Process. 6:155‐174.
   Holland, P.C. 1990. Event representation in Pavlovian conditioning: Image and action. Cognition 37:105‐131.
   Holland, P.C. 2004. Relations between Pavlovian‐instrumental transfer and reinforcer devaluation. J. Exp. Psychol. Anim. Behav. Process. 30:104‐117.
   Holland, P.C. and Gallagher, M. 2003. Double dissociation of the effects of lesions of basolateral and central amygdala on conditioned stimulus‐potentiated feeding and Pavlovian‐instrumental transfer. Eur. J. Neurosci. 17:1680‐1694.
   Hyde, T.S. 1976. The effect of Pavlovian stimuli on the acquisition of a new response. Learn. Motiv. 7:223‐239.
   Hyman, S.E., Malenka, R.C., and Nestler, E.J. 2006. Neural mechanisms of addiction: The role of reward‐related learning and memory. Annu. Rev. Neurosci. 29:565‐598.
   Ito, R., Robbins, T.W., and Everitt, B.J. 2004. Differential control over cocaine‐seeking behavior by nucleus accumbens core and shell. Nat. Neurosci. 7:389‐397.
   Kelleher, R.T. 1966. Conditioned reinforcement in second‐order schedules. J. Exp. Anal. Behav. 9:475‐485.
   Konorski, J. 1967. Integrative activity of the brain: An interdisciplinary approach. University of Chicago, Chicago, Ill.
   Lovibond, P.F. 1981. Appetitive Pavlovian‐instrumental interactions: Effects of inter‐stimulus interval and baseline reinforcement conditions. Q. J. Exp. Psychol. B 33:257‐269.
   Lovibond, P.F. 1983. Facilitation of instrumental behavior by a Pavlovian appetitive conditioned stimulus. J. Exp. Psychol. Anim. Behav. Process. 9:225‐247.
   Mackintosh, N.J. 1974. The psychology of animal learning. Academic Press, London.
   Mead, A.N. and Stephens, D.N. 2003a. Involvement of AMPA receptor GluR2 subunits in stimulus‐reward learning: Evidence from glutamate receptor gria1 knock‐out mice. J. Neurosci. 23:9500‐9507.
   Mead, A.N. and Stephens, D.N. 2003b. Selective disruption of stimulus‐reward learning in glutamate receptor gria1 knock‐out mice. J. Neurosci. 23:1041‐1048.
   Mead, A.N., Brown, G., Le Merrer, J., and Stephens, D.N. 2005. Effects of deletion of gria1 or gria2 genes encoding glutamatergic AMPA‐receptor subunits on place preference conditioning in mice. Psychopharmacology 179:164‐171.
   Morse, W.H. and Skinner, B.F. 1958. Some factors involved in the stimulus control of operant behavior. J. Exp. Anal. Behav. 1:103‐107.
   Mowrer, O.H. and Aiken, E.G., 1954. Contiguity vs. drive‐reduction in conditioned fear: Temporal variations in conditioned and unconditioned stimulus. Am. J. Psychol. 67:26‐38.
   Murschall, A. and Hauber, W. 2006. Inactivation of the ventral tegmental area abolished the general excitatory influence of Pavlovian cues on instrumental performance. Learn. Mem. 13:123‐126.
   O'Brien, C.P., Childress, A.R., Mclellan, T.A., and Ehrman, R. 1992. Classical conditioning in drug dependent humans. Ann. N.Y. Acad. Sci. 654:400‐415.
   Ostlund, S.B. and Balleine, B.W. 2007. Orbitofrontal cortex mediates outcome encoding in Pavlovian but not instrumental conditioning. J. Neurosci. 27:4819‐4825.
   Pavlov, I.P. 1927. Conditioned reflexes: An investigation of physiological activity of the cerebral cortex. Dover Publications, New York.
   Pearce, J.J. and Hall, G. 1978. Overshadowing the instrumental conditioning of a lever‐press response by a more valid predicto of the reinforcer. J. Exp. Anal. Behav. 4:356‐367.
   Picciotto, M.R. and Wickman, K. 1998. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol. Rev. 78:1131‐1163.
   Rescorla, R.A. 1967. Pavlovian conditioning and its proper control procedures. Psychol. Rev. 74:71‐80.
   Rescorla, R.A. 1988. Pavlovian conditioning. It's not what you think it is. Am. Psychol. 43:151‐160.
   Rescorla, R.A. and Solomon, R.L. 1967. Two‐process learning theory: Relationships between Pavlovian conditioning and instrumental learning. Psychol. Rev. 74:151‐182.
   Robinson, T.E. and Berridge, K.C. 1993. The neural basis of drug craving: An incentive‐sensitization theory of addiction. Brain Res. Rev. 18:247‐291.
   Shiffman, S. 1982. Relapse following smoking cessation: A situational analysis. J. Consult. Clin. Psychol. 50:71‐86.
   Stephens, D.N., Mead, A.N., and Ripley, T.L. 2002. Studying the neurobiology of stimulant and alcohol abuse and dependence in genetically manipulated mice. Behav. Pharmacol. 13:327‐345.
   Tomie, A. 1996. Locating reward cue at response manipulandum (CAM) induces symptoms of drug abuse. Neurosci. Biobehav. Rev. 20:505‐535.
   Wagner, A.R. and Brandon, S.E. 1989. Evolution of a structured connectionist model of Pavlovian conditioning (AESOP). In Contemporary Learning Theories (S.B. Klein and R.R. Mowrer, eds.) pp. 149‐189. L. Erlbaum, Hillsdale, N.J.
   Wallace, B.C. 1989. Psychological and environmental determinants of relapse in crack cocaine smokers. J. Subst. Abuse Treat. 6:95‐106.
   Weingarten, H.P. 1983. Conditioned cues elicit feeding in sated rats: A role for learning in meal initiation. Science 220:431‐433.
   Wikler, A. 1948. Recent progress in research on the neurophysiological basis of morphine addiction. Am. J. Psychiatry 105:329‐338.
   Winterbauer, N.E. and Balleine, B.W. 2007. The influence of amphetamine on sensory and conditioned reinforcement: Evidence for the re‐selection hypothesis of dopamine function. Front. Integr. Neurosci. 1:9.
   Wyvell, C.L. and Berridge, K.C. 2000. Intra‐accumbens amphetamine increases the conditioned incentive salience of sucrose reward: Enhancement of reward “wanting” without enhanced “liking” or response reinforcement. J. Neurosci. 20:8122‐8130.
   Zambie, E. 1973. Augmentation of eating following a signal for feeding in rats. Learn. Motiv. 4:138‐147.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library