Examining Object Location and Object Recognition Memory in Mice

Annie Vogel‐Ciernia1, Marcelo A. Wood1

1 Center for the Neurobiology of Learning and Memory, Irvine, California
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.31
DOI:  10.1002/0471142301.ns0831s69
Online Posting Date:  October, 2014
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

This unit is designed to provide sufficient instruction for the setup and execution of tests for object location and object recognition in adult mice. This task is ideally suited for the study of a variety of mouse models that examine disease mechanisms and novel therapeutic targets. By altering several key parameters, the experimenter can investigate short‐term or long‐term memory and look for either memory impairments or enhancements. Object location and object recognition memory tasks rely on a rodent's innate preference for novelty, and can be conducted sequentially in the same cohort of animals. These two tasks avoid the inherent stress induced with other common measures of rodent memory such as fear conditioning and the Morris water maze. This protocol covers detailed instructions on conducting both tasks, as well as key points concerning data collection, analysis, and interpretation. Curr. Protoc. Neurosci. 69:8.31.1‐8.31.17. © 2014 by John Wiley & Sons, Inc.

Keywords: spatial memory; object memory; memory disorders

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1:

  Materials
  • 70% (v/v) ethanol
  • Bedding: Sani‐Chips (P.J. Murphy Forest Products) and/or standard animal bedding
  • Subject mice: e.g., C57BL/6J (B6) age 8 weeks to 6 months
  • Marking pen (dark)
  • 10% (v/v) ethanol (in water)
  • Isolated test (experimental) room, with minimal cues visible to the subject (not a colony room)
  • Holding area: dedicated room or quiet area within the testing room
  • Overhead lamps
  • Lux meter (Fisher Scientific)
  • OLM testing chamber: white rectangular open field 30 × 23 × 23–cm with vertical black marking strip
  • ORM testing chamber circular bucket: diameter 28.4 cm × height 23 cm with vertical white marking strip
  • Empty holding cage
  • Automated video tracking system (e.g., see http://www.anymaze.com)
  • Computer (PC with WindowsXP, Pentium II 800GHz or higher, 512MB RAM, SVGA display in 16 bit, 45MB hard disk space if installing ANY‐maze) with capture card (i.e., Euresys Picolo or Adlink RTV‐24)
  • Camera with adjustable zoom lens (preferably CCTV camera with vari‐focal lens; i.e., Panasonic WV‐PB332 with PLZ27/5 vari‐focal lens)
  • Camera‐mounting bracket so the camera can face straight down
  • Video cables and adapters as needed (ANY‐maze provides a nice wizard to help choose computer a camera, lenses, card, and cables: http://www.anymaze.com/equipwizard.htm)
  • Video Recording software (i.e., mediacruise)
  • Handling sleeve (Ansell, cat. no. 19‐120‐3177)
  • Two (or more) gooseneck desk lamps with incandescent 75‐W light bulbs
  • Stopwatches without beepers or with beepers silenced
  • Paper towels
  • 100‐ml Beakers filled with cement (two per chamber)
  • Tins: Kamenstein Quality Spice Rack item # 31106 6 can rack (remove the magnets and covers) and fill with cement to the brim (cover the hole in the side/bottom with cement); two per chamber
  • Candle holders: Quick Candles item # 1150 clear 2 in. × 2 in. square tea light candle holder (fill with cement; two per chamber)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Akirav, I. and Maroun, M. 2006. Ventromedial prefrontal cortex is obligatory for consolidation and reconsolidation of object recognition memory. Cerebral Cortex 16:1759‐1765.
  Assini, F.L., Duzzioni, M., and Takahashi, R.N. 2009. Object location memory in mice: Pharmacological validation and further evidence of hippocampal CA1 participation. Behav. Brain Res. 204:206‐211.
  Balderas, I., Rodriguez‐Ortiz, C.J., Salgado‐Tonda, P., Chavez‐Hurtado, J., McGaugh, J.L., and Bermudez‐Rattoni, F. 2008. The consolidation of object and context recognition memory involve different regions of the temporal lobe. Learn. Mem. 15:618‐624.
  Barrett, R.M., Malvaez, M., Kramar, E., Matheos, D.P., Arrizon, A., Cabrera, S.M., Lynch, G., Greene, R.W., and Wood, M.A. 2011. Hippocampal focal knockout of CBP affects specific histone modifications, long‐term potentiation, and long‐term memory. Neuropsychopharmacology 36:1545‐1556.
  Bermudez‐Rattoni, F., Okuda, S., Roozendaal, B., and McGaugh, J.L. 2005. Insular cortex is involved in consolidation of object recognition memory. Learn. Mem. 12:447‐449.
  Brooks, S.P., Pask, T., Jones, L., and Dunnett, S.B. 2005. Behavioural profiles of inbred mouse strains used as transgenic backgrounds. II: Cognitive tests. Genes Brain Behav. 4:307‐317.
  Dere, E., Huston, J.P., and De Souza Silva, M.A. 2007. The pharmacology, neuroanatomy and neurogenetics of one‐trial object recognition in rodents. Neurosci. Biobehav. Rev. 31:673‐704.
  Dix, S.L. and Aggleton, J.P. 1999. Extending the spontaneous preference test of recognition: Evidence of object‐location and object‐context recognition. Behav. Brain Res. 99:191‐200.
  Ennaceur, A. 2010. One‐trial object recognition in rats and mice: Methodological and theoretical issues. Behav. Brain Res. 215:244‐254.
  Ennaceur, A. and Delacour, J. 1988. A new one‐trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav. Brain Res. 31:47‐59.
  Haettig, J., Stefanko, D.P., Multani, M.L., Figueroa, D.X., McQuown, S.C., and Wood, M.A. 2011. HDAC inhibition modulates hippocampus‐dependent long‐term memory for object location in a CBP‐dependent manner. Learn. Mem. 18:71‐79.
  Lima, R.H., Rossato, J.I., Furini, C.R., Bevilaqua, L.R., Izquierdo, I., and Cammarota, M. 2009. Infusion of protein synthesis inhibitors in the entorhinal cortex blocks consolidation but not reconsolidation of object recognition memory. Neurobiol. Learn. Mem. 91:466‐472.
  McNulty, S.E., Barrett, R.M., Vogel‐Ciernia, A., Malvaez, M., Hernandez, N., Davatolhagh, M.F., Matheos, D.P., Schiffman, A., and Wood, M.A. 2012. Differential roles for Nr4a1 and Nr4a2 in object location vs. object recognition long‐term memory. Learn. Mem. 19:588‐592.
  McQuown, S.C., Barrett, R.M., Matheos, D.P., Post, R.J., Rogge, G.A., Alenghat, T., Mullican, S.E., Jones, S., Rusche, J.R., Lazar, M.A., and Wood, M.A. 2011. HDAC3 is a critical negative regulator of long‐term memory formation. J. Neurosci. 31:764‐774.
  Mumby, D.G. 2001. Perspectives on object‐recognition memory following hippocampal damage: Lessons from studies in rats. Behav. Brain Res. 127:159‐181.
  Mumby, D.G., Gaskin, S., Glenn, M.J., Schramek, T.E., and Lehmann, H. 2002. Hippocampal damage and exploratory preferences in rats: Memory for objects, places, and contexts. Learn. Mem. 9:49‐57.
  Murai, T., Okuda, S., Tanaka, T., and Ohta, H. 2007. Characteristics of object location memory in mice: Behavioral and pharmacological studies. Physiol. Behav. 90:116‐124.
  Roozendaal, B., Hernandez, A., Cabrera, S.M., Hagewoud, R., Malvaez, M., Stefanko, D.P., Haettig, J., and Wood, M.A. 2010. Membrane‐associated glucocorticoid activity is necessary for modulation of long‐term memory via chromatin modification. J. Neurosci. 30:5037‐5046.
  Rossato, J.I., Bevilaqua, L.R.M., Myskiw, J.C., Medina, J.H., Izquierdo, I., and Cammarota, M. 2007. On the role of hippocampal protein synthesis in the consolidation and reconsolidation of object recognition memory. Learn. Mem. 14:36‐46.
  Stefanko, D.P., Barrett, R.M., Ly, A.R., Reolon, G.K., and Wood, M.A. 2009. Modulation of long‐term memory for object recognition via HDAC inhibition. Proc. Natl. Acad. Sci. 106:9447‐9452.
  Vogel‐Ciernia, A., Matheos, D.P., Barrett, R.M., Kramár, E.A., Azzawi, S., Chen, Y., Magnan, C.N., Zeller, M., Sylvain, A., Haettig, J., Jia, Y., Tran, A., Dang, R., Post, R.J., Chabrier, M., Babayan, A.H., Wu, J.I., Crabtree, G.R., Baldi, P., Baram, T.Z., Lynch, G., and Wood, M.A. 2013. The neuron‐specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat. Neurosci. 16:552‐561.
  Wimmer, M.E., Hernandez, P.J., Blackwell, J., and Abel, T. 2012. Aging impairs hippocampus‐dependent long‐term memory for object location in mice. Neurobiol. Aging 33:2220‐2224.
  Winters, B.D. and Bussey, T.J. 2005. Transient inactivation of perirhinal cortex disrupts encoding, retrieval, and consolidation of object recognition memory. J. Neurosci. 25:52‐61.
  Winters, B.D., Forwood, S.E., Cowell, R.A., Saksida, L.M., and Bussey, T.J. 2004. Double dissociation between the effects of peri‐postrhinal cortex and hippocampal lesions on tests of object recognition and spatial memory: Heterogeneity of function within the temporal lobe. J. Neurosci. 24:5901‐5908.
  Winters, B.D., Saksida, L.M., and Bussey, T.J. 2008. Object recognition memory: Neurobiological mechanisms of encoding, consolidation and retrieval. Neurosci. Biobehav. Rev. 32:1055‐1070.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library