To Stress or Not to Stress: A Question of Models

J. Megan Gray1, Francis Chaouloff2, Matthew N. Hill1

1 Hotchkiss Brain Institute, Mathison Centre for Mental Health Research, University of Calgary, Alberta, 2 Endocannabinoids and NeuroAdaptation, Neurocentre INSERM U862, University Bordeaux 2, Bordeaux
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.33
DOI:  10.1002/0471142301.ns0833s70
Online Posting Date:  January, 2015
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Stress research is a rapidly evolving field that encompasses numerous disciplines ranging from neuroscience to metabolism. With many new researchers migrating into the field, navigating the hows and whys of specific research questions can sometimes be enigmatic given the availability of so many models in the stress field. Additionally, as with every field, there are many seemingly minor experimental details that can have dramatic influences on data interpretation, although many of these are unknown to those not familiar with the field. The aim of this overview is to provide some suggestions and points to guide researchers moving into the stress field and highlight relevant methodological points that they should consider when choosing a model for stress and deciding how to structure a study. We briefly provide a primer on the basics of endpoint measurements in the stress field, factors to consider when choosing a model for acute stress, the difference between repeated and chronic stress, and importantly, influencing variables that modulate endpoints of analysis in stress work. © 2015 by John Wiley & Sons, Inc.

Keywords: chronic stress; social stress; HPA axis; glucocorticoids

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • What's Your Question? A Quick Guide for Choosing and Designing Stress Experiments
  • What's Your Question?
  • Basic Stress Measures: Behavior, Physiological, and Endocrine Outputs
  • Stress Duration: Acute versus Repeated versus Chronic
  • Factors to Consider
  • Conclusion
  • Literature Cited
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
  Alahmed, S. and Herbert, J. 2008. Strain differences in proliferation of progenitor cells in the dentate gyrus of the adult rat and the response to fluoxetine are dependent on corticosterone. Neuroscience 157:677‐682.
  Armario, A., Montero, J., and Balasch, J. 1986. Sensitivity of corticosterone and some metabolic variables to graded levels of low intensity stresses in adult male rats. Physiol. Behav. 37:559‐561.
  Aslani, S., Harb, M.R., Costa, P.S., Almeida, O.F.X., Sousa, N., and Palha, J.A. 2014. Day and night: Diurnal phase influences the response to chronic mild stress. Front. Behav. Neurosci. 8:82.
  Avgustinovich, D.F., Gorbach, O.V., and Kudryavtseva, N.N. 1997. Comparative analysis of anxiety‐like behavior in partition and plus‐maze tests after agonistic interactions in mice. Physiol. Behav. 61:37‐43.
  Barnum, C.J., Blandino, P., and Deak, T. 2007. Adaptation in the corticosterone and hyperthermic responses to stress following repeated stressor exposure. J. Neuroendocrinol. 19:632‐642.
  Bartlang, M.S., Neumann, I.D., Slattery, D.A., Uschold‐Schmidt, N., Kraus, D., Helfrich‐Förster, C., and Reber, S.O. 2012. Time matters: Pathological effects of repeated psychosocial stress during the active, but not inactive, phase of male mice. J. Neuroendocrinol. 215:425‐437.
  Bartolomucci, A., Pederzani, T., Sacerdote, P., Panerai, A.E., Parmigiani, S., and Palanza, P. 2004. Behavioral and physiological characterization of male mice under chronic psychosocial stress. Psychoneuroendocrinology 29:899‐910.
  Basso, M., Depiante‐Depaoli, M., Cancela, L., and Molina, V. 1993. Seven‐day variable‐stress regime alters cortical beta‐adrenoceptor binding and immunologic responses: Reversal by imipramine. Pharmacol. Biochem. Behav. 45:665‐672.
  Benedict, C.R., Fillenz, M., and Stanford, C. 1978. Changes in plasma noradrenaline concentration as a measure of release rate. Br. J. Pharmacol. 64:305‐309.
  Bergström, A., Jayatissa, M.N., Mørk, A., and Wiborg, O. 2008. Stress sensitivity and resilience in the chronic mild stress rat model of depression; An in situ hybridization study. Brain Res. 1196:41‐52.
  Berton, O., Aguerre, S., Sarrieau, A., Mormede, P., and Chaouloff, F. 1998. Differential effects of social stress on central serotonergic activity and emotional reactivity in Lewis and spontaneously hypertensive rats. Neuroscience 82:147‐159.
  Berton, O., Durand, M., Aguerre, S., Morme, P., and Chaouloff, F. 1999. Behavioral, neuroendocrine and serotonergic consequences of single social defeat and repeated fluoxetine pretreatment in the Lewis rat strain. Neuroscience 92:327‐341.
  Berton, O., McClung, C.A., Dileone, R.J., Krishnan, V., Renthal, W., Russo, S.J., Graham, D., Tsankova, N.M., Bolanos, C.A., Rios, M., Monteggia, L.M., Self, D.W., and Nestler, E.J. 2006. Essential role of BDNF in the mesolimbic dopamine pathway in social defeat stress. Science 311:864‐868.
  Bhatnagar, S., Vining, C., Iyer, V., and Kinni, V. 2006. Changes in hypothalamic‐pituitary‐adrenal function, body temperature, body weight and food intake with repeated social stress exposure in rats. J. Neuroendocrinol. 18:13‐24.
  Bielohuby, M., Herbach, N., Wanke, R., Maser‐Gluth, C., Beuschlein, F., Wolf, E., and Hoeflich, A. 2007. Growth analysis of the mouse adrenal gland from weaning to adulthood: Time‐ and gender‐dependent alterations of cell size and number in the cortical compartment. Am. J. Physiol. Endocrinol. Metab. 293:139‐146.
  Bingel, A.S. and Schwartz, N. 1969. Pituitary LH content and reproductive tract changes during the mouse oestrous cycle. J. Reprod. Fertil. 19:215‐222.
  Björkqvist, K. 2001. Social defeat as a stressor in humans. Physiol. Behav. 73:435‐442.
  Buechel, H.M., Popovic, J., Staggs, K., Anderson, K.L., Thibault, O., and Blalock, E.M. 2014. Aged rats are hypo‐responsive to acute restraint: Implications for psychosocial stress in aging. Front. Aging Neurosci. 6:13.
  Butler, R.K., Sharko, A.C., Oliver, E.M., Brito‐Vargas, P., Kaigler, K.F., Fadel, J.R., and Wilson, M. 2011. Activation of phenotypically‐distinct neuronal subpopulations of the rat amygdala following exposure to predator odor. Neuroscience 175:133‐144.
  Buwalda, B., Kole, M.H.P., Veenema, A.H., Huininga, M., de Boer, S.F., Korte, S.M., and Koolhaas, J.M. 2005. Long‐term effects of social stress on brain and behavior: A focus on hippocampal functioning. Neurosci. Biobehav. Rev. 29:83‐97.
  Campeau, S., Dolan, D., Akil, H., and Watson, S. 2002. c‐fos mRNA induction in acute and chronic audiogenic stress: Possible role of the orbitofrontal cortex in habituation. Stress 5:121‐130.
  Cannon, W. 1939. The argument for chemical mediation of nerve impulses. Science 90:521‐527.
  Chaouloff, F. 2013. Social stress models in depression research: What do they tell us? Cell Tissue Res. 354:179‐190.
  Chen, X. and Herbert, J. 1995. Regional changes in c‐fos expression in the basal forebrain and brainstem during adaptation to repeated stress: Correlation with cardiovascular, hypothermic and endocrine responses. Neuroscience 64:675‐685.
  Christensen, T., Bisgaard, C.F., and Wiborg, O. 2011. Biomarkers of anhedonic‐like behavior, antidepressant drug refraction, and stress resilience in a rat model of depression. Neuroscience 196:66‐79.
  Chuang, J.C., Krishnan, V., Yu, H.G., Mason, B., Cui, H., Cui, H., Wilkinson, M.B., Zigman, J.M., Elmquist, J.K., Nestler, E.J., and Lutteremail, M. 2010. A beta3‐adrenergic‐leptin‐melanocortin circuit regulates behavioral and metabolic changes induced by chronic stress. Biol. Psychiatr. 67:1075‐1082.
  Chung, S., Son, G.H., and Kim, K. 2011. Circadian rhythm of adrenal glucocorticoid: Its regulation and clinical implications. Biochim. Biophys. Acta 1812:581‐591.
  Crane, J.W., French, K.R., and Buller, K.M. 2005. Patterns of neuronal activation in the rat brain and spinal cord in response to increasing durations of restraint stress. Stress 8:199‐211.
  Dallman, M.F., Pecoraro, N., Akana, S.F., La Fleur, S.E., Gomez, F., Houshyar, H., Bell, M.E., Bhatnagar, S., Laugero, K.D., and Manalo, S. 2003. Chronic stress and obesity: A new view of “comfort food”. Proc. Natl. Acad. Sci. U.S.A. 100:11696‐11701.
  Delgado y Palacios, R., Campo, A., Henningsen, K., Verhoye, M., Poot, D., Dijkstra, J., Van Audekerke, J., Benveniste, H., Sijbers, J., Wiborg, O., and Van der Linden, A. 2011. Magnetic resonance imaging and spectroscopy reveal differential hippocampal changes in anhedonic and resilient subtypes of the chronic mild stress rat model. Biol. Psychiatr. 70:449‐457.
  Dobrakovová, M., Kvetnanský, R., Oprsalová, Z., and Jezová, D. 1993. Specificity of the effect of repeated handling on sympathetic‐adrenomedullary and pituitary‐adrenocortical activity in rats. Psychoneuroendocrinology 18:163‐174.
  Doremus‐Fitzwater, T.L., Varlinskaya, E.I., and Spear, L.P. 2009. Social and non‐social anxiety in adolescent and adult rats after repeated restraint. Physiol. Behav. 97:484‐494.
  Droste, S.K., de Groote, L., Atkinson, H.C., Lightman, S.L., Reul, J.M.H.M., and Linthorst, A.C.E. 2008. Corticosterone levels in the brain show a distinct ultradian rhythm but a delayed response to forced swim stress. Endocrinology 149:3244‐3253.
  Dubovicky, M., Mach, M., Key, M., Morris, M., Paton, S., and Lucot, J. 2007. Diurnal behavioral and endocrine effects of chronic shaker stress in mice. Neuro Endocrinol. Lett. 28:846‐853.
  Dubreucq, S., Matias, I., Cardinal, P., Häring, M., Lutz, B., Marsicano, G., and Chaouloff, F. 2012. Genetic dissection of the role of cannabinoid type‐1 receptors in the emotional consequences of repeated social stress in mice. Neuropsychopharmacology 37:1885‐1900.
  Evanson, N.K., Tasker, J.G., Hill, M.N., Hillard, C.J., and Herman, J.P. 2010. Fast feedback inhibition of the HPA axis by glucocorticoids is mediated by endocannabinoid signaling. Endocrinology 151:4811‐4819.
  Ferland, C.L. and Schrader, L.A., 2011. Cage mate separation in pair‐housed male rats evokes an acute stress corticosterone response. Neurosci. Lett. 489:154‐158.
  Fevurly, R.D. and Spencer, R.L. 2004. Fos expression is selectively and differentially regulated by endogenous glucocorticoids in the paraventricular nucleus of the hypothalamus and the dentate gyrus. J. Neuroendocrinol. 16:970‐979.
  Figueiredo, H., Dolgas, C., and Herman, J. 2002. Stress activation of cortex and hippocampus is modulated by sex and stage of estrus. Endocrinology 143:2534‐2540.
  Figueiredo, H., Ulrich‐Lai, Y., Choi, D., and Herman, J. 2007. Estrogen potentiates adrenocortical responses to stress in female rats. Am. J. Physiol. Endocrinol. Metab. 292:1173‐1182.
  Figueiredo, H.F., Bodie, B.L., Tauchi, M., Dolgas, C.M., and Herman, J.P. 2003. Stress integration after acute and chronic predator stress: Differential activation of central stress circuitry and sensitization of the hypothalamo‐pituitary‐adrenocortical axis. Endocrinology 144:5249‐5258.
  Foster, M.T., Solomon, M.B., Huhman, K.L., Bartness, T.J., and Michelle, T. 2006. Social defeat increases food intake, body mass, and adiposity in Syrian hamsters. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290:1284‐1293.
  Frasier, C.R., Brown, D.A., Sloan, R.C., Hayes, B., Stewart, L.M., Patel, H.D., Lust, R.M., and Rosenbaum, M.D. 2013. Stage of the estrous cycle does not influence myocardial ischemia‐reperfusion injury in rats (Rattus norvegicus). Comp. Med. 63:416‐421.
  Fuchs, E. and Flügge, G. 2002. Social stress in tree shrews: Effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol. Biochem. Behav. 73:247‐258.
  Galea, L.A., McEwen, B.S., Tanapat, P., Deak, T., Spencer, R.L., and Dhabhar, F.S. 1997. Sex differences in dendritic atrophy of CA3 pyramidal neurons in response to chronic restraint stress. Neuroscience 81:689‐697.
  Gartner, K., Buttner, D., Dohler, K., Friedel, R., Lindena, J., and Trautschold, I. 1980. Stress response of rats to handling and experimental procedures. Lab. Anim. 14:267‐274.
  Girotti, M., Pace, T.W.W., Gaylord, R.I., Rubin, B.A., Herman, J.P., and Spencer, R.L. 2006. Habituation to repeated restraint stress is associated with lack of stress‐induced c‐fos expression in primary sensory processing areas of the rat brain. Neuroscience 138:1067‐1081.
  Goel, N., Workman, J.L., Lee, T.T., Innala, L., and Viau, V. 2014. Sex differences in the HPA axis. Compr. Physiol. 4:1121‐1155.
  Golden, S.A., Covington, H.E., Berton, O., and Russo, S.J. 2011. A standardized protocol for repeated social defeat stress in mice. Nat. Protoc. 6:1183‐1191.
  Gray, M., Bingham, B., and Viau, V. 2010. A comparison of two repeated restraint stress paradigms on hypothalamic‐pituitary‐adrenal axis habituation, gonadal status and central neuropeptide expression in adult male rats. J. Neuroendocrinol. 22:92‐101.
  Gray, M., Innala, L., and Viau, V. 2014. Central vasopressin V1A receptor blockade alters patterns of cellular activation and prevents glucocorticoid habituation to repeated restraint stress exposure. Int. J. Neuropsychopharmacol. 10:1‐11.
  Grissom, N. and Bhatnagar, S. 2009. Habituation to repeated stress: Get used to it. Neurobiol. Learn. Mem. 92:215‐224.
  Grissom, N., Kerr, W., and Bhatnagar, S. 2008. Struggling behavior during restraint is regulated by stress experience. Behav. Brain Res. 191:219‐226.
  Grissom, N., Iyer, V., Vining, C., and Bhatnagar, S. 2007. The physical context of previous stress exposure modifies hypothalamic‐pituitary‐adrenal responses to a subsequent homotypic stress. Horm. Behav. 51:95‐103.
  Haemisch, A., Guerra, G., and Furkert, J. 1999. Adaptation of corticosterone‐ but not beta‐endorphin‐secretion to repeated blood sampling in rats. Lab. Anim. 33:185‐191.
  Hall, B.S. and Romeo, R.D. 2014. The influence of poststress social factors on hormonal reactivity in prepubertal male rats. Dev. Psychobiol 56:1061‐1069.
  Handa, R., Burgess, L., Kerr, J., and O'Keefe, J. 1994. Gonadal steroid hormone receptors and sex differences in the hypothalamic‐pituitary‐adrenal axis. Horm. Behav. 28:464‐476.
  Hennessy, M.B. 1991. Sensitization of the plasma corticosterone response to novel environments. Physiol. Behav. 50:1175‐1179.
  Hennessy, J., Levin, R., and Levine, S. 1977. Influence of experiential factors and gonadal hormones on pituitary‐adrenal response of the mouse to novelty and electric shock. J. Comp. Physiol. Psychol. 91:770‐777.
  Hill, M.N., Hellemans, K.G.C., Verma, P., Gorzalka, B.B., and Weinberg, J. 2012. Neurobiology of chronic mild stress: Parallels to major depression. Neurosci. Biobehav. Rev. 36:2085‐2117.
  Hill, M.N., Kumar, S.A., Filipski, S.B., Iverson, M., Stuhr, K.L., Keith, J.M., Cravatt, B.F., Hillard, C.J., Chattarji, S., and McEwen, B.S. 2013. Disruption of fatty acid amide hydrolase activity prevents the effects of chronic stress on anxiety and amygdalar microstructure. Mol. Psychiatr. 18:1125‐1135.
  Hill, M.N., Mclaughlin, R.J., Pan, B., Fitzgerald, M.L., Roberts, C.J., Lee, T.T., Karatsoreos, I.N., Mackie, K., Viau, V., Pickel, V.M., McEwen, B.S., Liu, Q.‐S., Gorzalka, B.B., and Hillard, C.J. 2011. Recruitment of prefrontal cortex endocannabinoid signaling by glucocorticoids contributes to termination of the stress response. J. Neurosci. 31:10506‐10515.
  Hjemdahl, P. 1993. Plasma catecholamines‐analytical challenges and physiological limitations. Baillieres Clin. Endocrinol. Metab. 7:307‐353.
  Hoffman, G., Smith, M., and Verbalis, J. 1993. c‐Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front. Neuroendocrinol. 14:173‐213.
  Huhman, K.L. 2006. Social conflict models: Can they inform us about human psychopathology? Horm. Behav. 50:640‐646.
  Jayatissa, M.N., Henningsen, K., Nikolajsen, G., West, M.J., and Wiborg, O. 2010. A reduced number of hippocampal granule cells does not associate with an anhedonia‐like phenotype in a rat chronic mild stress model of depression. Stress 13:95‐105.
  Kalsbeek, A., van der Spek, R., Lei, J., Endert, E., Buijs, R.M., and Fliers, E. 2012. Circadian rhythms in the hypothalamo‐pituitary‐adrenal (HPA) axis. Mol. Cell. Endocrinol. 349:20‐29.
  Karatsoreos, I.N., Bhagat, S.M., Bowles, N.P., Weil, Z.M., Pfaff, D.W., and McEwen, B.S. 2010. Endocrine and physiological changes in response to chronic corticosterone: A potential model of the metabolic syndrome in mouse. Endocrinology 151:2117‐2127.
  Karpac, J., Czyzewska, K., Kern, A., Brush, R.S., Anderson, R.E., and Hochgeschwender, U. 2008. Failure of adrenal corticosterone production in POMC‐deficient mice results from lack of integrated effects of POMC peptides on multiple factors. Am. J. Physiol. Endocrinol. Metab. 295:446‐455.
  Kavaliers, M., Colwell, D., and Choleris, E. 2003. Learning to fear and cope with a natural stressor: Individually and socially acquired corticosterone and avoidance responses to biting flies. Horm. Behav. 43:99‐107.
  Koolhaas, J., De Boer, S., De Rutter, A., Meerlo, P., and Sgoifo, A. 1997. Social stress in rats and mice. Acta Physiol. Scand. 640:69‐72.
  Koolhaas, J.M., Bartolomucci, A., Buwalda, B., de Boer, S.F., Flügge, G., Korte, S.M., Meerlo, P., Murison, R., Olivier, B., Palanza, P., Richter‐Levine, G., Sgoifok, A., Steimerj, T., Stiedlf, O., van Dijkh, G., Wöhrd, M., and Fuchsb, E. 2011. Stress revisited: A critical evaluation of the stress concept. Neurosci. Biobehav. Rev. 35:1291‐1301.
  Korte, S.M., Koolhaas, J.M., Wingfield, J.C., and McEwen, B.S. 2005. The Darwinian concept of stress: Benefits of allostasis and costs of allostatic load and the trade‐offs in health and disease. Neurosci. Biobehav. Rev. 29:3‐38.
  Kovács, K.J. 2008. Measurement of immediate‐early gene activation—c‐fos and beyond. J. Neuroendocrinol. 20:665‐672.
  Krishnan, V., Han, M.‐H., Graham, D.L., Berton, O., Renthal, W., Russo, S.J., Laplant, Q., Graham, A., Lutter, M., Lagace, D.C., Ghose, S., Reister, R., Tannous, P., Green, T.A., Neve, R.L., Chakravarty, S., Kumar, A., Eisch, A.J., Self, D.W., Lee, F.S., Tamminga, C.A., Cooper, D.C., Gershenfeld, H.K., and Nestler, E.J. 2007. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391‐404.
  Kudryavtseva, N.N., Bakshtanovskaya, I.V., and Koryakina, L. 1991. Social model of depression in mice of C57BL/6J strain. Pharmacol. Biochem. Behav. 38:315‐320.
  Kvetnansky, R. and Mikulaj, L. 1970. Adrenal and urinary catecholamines in rats during adaptation to repeated immobilization stress. Endocrinology 87:738‐743.
  Landi, M., Kreider, J., Lang, C., and Bullock, L. 1982. Effects of shipping on the immune function in mice. Am. J. Vet. Res. 43:1654‐1657.
  Lawson, D. and Gala, R. 1974. The influence of surgery, time of day, blood volume reduction and anesthetics on plasma prolactin in ovariectomized rats. J. Endocrinol. 62:75‐83.
  Lederbogen, F., Kirsch, P., Haddad, L., Streit, F., Tost, H., Schuch, P., Wüst, S., Pruessner, J.C., Rietschel, M., Deuschle, M., and Meyer‐Lindenberg, A. 2011. City living and urban upbringing affect neural social stress processing in humans. Nature 474:498‐501.
  Li, H.Y., Ericsson, A., and Sawchenko, P.E. 1996. Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms. Proc. Natl. Acad. Sci. U.S.A. 93:2359‐2364.
  Longordo, F., Fan, J., Steimer, T., Kopp, C., and Lüthi, A. 2011. Do mice habituate to “gentle handling?” A comparison of resting behavior, corticosterone levels and synaptic function in handled and undisturbed C57BL/6J mice. Sleep 34:679‐681.
  Lupien, S.J., McEwen, B.S., Gunnar, M.R., and Heim, C. 2009. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat. Rev. Neurosci. 10:434‐445.
  Ma, S. and Morilak, D. 2004. Induction of FOS expression by acute immobilization stress is reduced in locus coeruleus and medial amygdala of Wistar‐Kyoto rats compared to Sprague‐Dawley rats. Neuroscience 124:963‐972.
  Marissal‐Arvy, N., Mormède, P., and Sarrieau, A., 1999. Strain differences in corticosteroid receptor efficiencies and regulation in Brown Norway and Fischer 344 rats. J. Neuroendocrinol. 11:267‐273.
  Matsuyama, H., Ruhmann‐Wennhold, A., Johnson, L.R., and Nelson, D.H. 1972. Disappearance rates of exogenous and endogenous ACTH from rat plasma measured by bioassay and radioimmunoassay. Metab. Clin. Exp. 21:30‐35.
  McCormick, C.M., Mathews, I.Z., Thomas, C., and Waters, P. 2010. Investigations of HPA function and the enduring consequences of stressors in adolescence in animal models. Brain Cogn. 72:73‐85.
  McGill, B.E., Bundle, S.F., Yaylaoglu, M.B., Carson, J.P., Thaller, C., and Zoghbi, H.Y. 2006. Enhanced anxiety and stress‐induced corticosterone release are associated with increased Crh expression in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. U.S.A. 103:18267‐18272.
  Mcguill, M.W. and Rowan, A.N. 1989. Perspectives on animal use biological effects of blood loss: Implications for sampling volumes and techniques. Inst. Lab. Anim. Res. J. 11:5‐18.
  Meerlo, P., De Boer, S.F., Koolhaas, J.M., Daan, S., and Van den Hoofdakker, R.H. 1996a. Changes in daily rhythms of body temperature and activity after a single social defeat in rats. Physiol. Behav. 59:735‐739.
  Meerlo, P., Overkamp, G., Daan, S., Van Den Hoofdakker, R., and Koolhaas, J. 1996b. Changes in behavior and body weight following a single or double social defeat in rats. Stress 1:21‐32.
  Miczek, K.A., Maxson, S.C., Fish, E.W., and Faccidomo, S. 2001. Aggressive behavioral phenotypes in mice. Behav. Brain Res. 125:167‐181.
  Miczek, K.A., Yap, J.J., and Covington, H.E. 2008. Social stress, therapeutics and drug abuse: Preclinical models of escalated and depressed intake. Pharmacol. Ther. 120:102‐128.
  Miczek, K.A., Nikulina, E.M., Shimamoto, A., and Covington, H.E. 2011. Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J. Neurosci. 31:9848‐9857.
  Mitra, R. and Sapolsky, R.M. 2008. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 105:5573‐5578.
  Moles, A., Bartolomucci, A., Garbugino, L., Conti, R., Caprioli, A., Coccurello, R., Rizzi, R., Ciani, B., and D'Amato, F.R. 2006. Psychosocial stress affects energy balance in mice: Modulation by social status. Psychoneuroendocrinology 31:623‐633.
  Morgan, J.I. and Curran, T. 1991. Stimulus‐transcription coupling in the nervous system: Involvement of the inducible proto‐oncogenes fos and jun. Annu. Rev. Neurosci. 14:421‐451.
  Mozhui, K., Karlsson, R.‐M., Kash, T.L., Ihne, J., Norcross, M., Patel, S., Farrell, M.R., Hill, E.E., Graybeal, C., Martin, K.P., Camp, M., Fitzgerald, P.J., Ciobanu, D.C., Sprengel, R., Mishina, M., Wellman, C.L., Winder, D.G., Williams, R.W., and Holmes, A., 2010. Strain differences in stress responsivity are associated with divergent amygdala gene expression and glutamate‐mediated neuronal excitability. J. Neurosci. 30:5357‐5367.
  Muscat, R. and Willner, P. 1992. Suppression of sucrose drinking by chronic mild unpredictable stress: A methodological analysis. Neurosci. Biobehav. Rev. 16:507‐517.
  Nader, N., Chrousos, G.P., and Kino, T. 2010. Interactions of the circadian CLOCK system and the HPA axis. Trends Endocrinol. Metab. 21:277‐286.
  Nankova, B., Kvetnanský, R., McMahon, A., Viskupic, E., Hiremagalur, B., Frankle, G., Fukuhara, K., Kopin, I.J., and Sabban, E.L. 1994. Induction of tyrosine hydroxylase gene expression by a nonneuronal nonpituitary‐mediated mechanism in immobilization stress. Proc. Natl. Acad. Sci. U.S.A. 91:5937‐5941.
  Natelson, B.H., Ottenweller, J.E., Cook, J.A., Pitman, D., McCarty, R., and Tapp, W.N. 1988. Effect of stressor intensity on habituation of the adrenocortical stress response. Physiol. Behav. 43:41‐46.
  Nestler, E.J. and Hyman, S.E. 2010. Animal models of neuropsychiatric disorders. Nat. Neurosci. 13:1161‐1169.
  Neylan, T.C. 1998. Hans Selye and the field of stress research. J. Neuropsychiatr. Clin. Neurosci. 10:230‐231.
  O'Mahony, C.M., Clarke, G., Gibney, S., Dinan, T.G., and Cryan, J.F. 2011. Strain differences in the neurochemical response to chronic restraint stress in the rat: Relevance to depression. Pharmacol. Biochem. Behav. 97:690‐699.
  Panagiotakopoulos, L. and Neigh, G.N. 2014. Development of the HPA axis: Where and when do sex differences manifest? Front. Neuroendocrinol. 35:285‐302.
  Panksepp, J. and Lahvis, G. 2011. Rodent empathy and affective neuroscience. Neurosci. Biobehav. Rev. 35:1864‐1875.
  Patterson, Z.R., Khazall, R., Mackay, H., Anisman, H., and Abizaid, A. 2013. Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress. Endocrinology 154:1080‐1091.
  Perez‐Cruz, C., Simon, M., Flügge, G., Fuchs, E., and Czéh, B. 2009. Diurnal rhythm and stress regulate dendritic architecture and spine density of pyramidal neurons in the rat infralimbic cortex. Behav. Brain Res. 205:406‐413.
  Pitman, D.L., Ottenweller, J.E., and Natelson, B.H. 1990. Effect of stressor intensity on habituation and sensitization of glucocorticoid responses in rats. Behav. Neurosci. 104:28‐36.
  Radley, J.J., Arias, C.M., and Sawchenko, P.E. 2006. Regional differentiation of the medial prefrontal cortex in regulating adaptive responses to acute emotional stress. J. Neurosci. 26:12967‐12976.
  Radley, J.J., Gosselink, K.L., and Sawchenko, P.E. 2009. A discrete GABAergic relay mediates medial prefrontal cortical inhibition of the neuroendocrine stress response. J. Neurosci. 29:7330‐7340.
  Rao, R., Anilkumar, S., McEwen, B., and Chattarji, S. 2012. Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol. Psychiatr. 72:466‐475.
  Reading, P.C., Moore, J.B., and Smith, G.L. 2003. Steroid hormone synthesis by vaccinia virus suppresses the inflammatory response to infection. J. Exp. Med. 197:1269‐1278.
  Retana‐Márquez, S., Bonilla‐Jaime, H., Vázquez‐Palacios, G., Martínez‐García, R., and Velázquez‐Moctezuma, J. 2003. Changes in masculine sexual behavior, corticosterone and testosterone in response to acute and chronic stress in male rats. Horm. Behav. 44:327‐337.
  Romeo, R.D. 2010. Adolescence: A central event in shaping stress reactivity. Dev. Psychobiol. 52:244‐253.
  Rybkin, I.I., Zhou, Y., Volaufova, J., Smagin, G.N., Ryan, D.H., and Harris, R.B. 1997. Effect of restraint stress on food intake and body weight is determined by time of day. Am. J. Physiol. 273:R1612‐R1622.
  Sainio, E., Lehtola, T., and Roininen, P. 1988. Radioimmunoassay of total and free corticosterone in rat plasma: Measurement of the effect of different doses of corticosterone. Steriods 51:609‐622.
  Salamone, J.D. and Correa, M. 2012. The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470‐485.
  Sapolsky, R.M., Krey, L.C., and McEwen, B.S. 1986. The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocr. Rev. 7:284‐301.
  Schmidt, M. V, Schmidt, M., Levine, S., Oitzl, M.S., van der Mark, M., Müller, M.B., Holsboer, F., and de Kloet, E.R. 2005. Glucocorticoid receptor blockade disinhibits pituitary‐adrenal activity during the stress hyporesponsive period of the mouse. Endocrinology 146:1458‐1464.
  Sedki, F., Abbas, Z., Angelis, S., Martin, J., D'Cunha, T., and Shalev, U. 2013. Is it stress? The role of stress related systems in chronic food restriction‐induced augmentation of heroin seeking in the rat. Front. Neurosci. 7:98.
  Seggie, J. and Brown, G. 1975. Stress response patterns of plasma corticosterone, prolactin, and growth hormone in the rat, following handling or exposure to novel environment. Can. J. Physiol. Pharmacol. 53:629‐637.
  Shoji, H. and Mizoguchi, K. 2010. Acute and repeated stress differentially regulates behavioral, endocrine, neural parameters relevant to emotional and stress response in young and aged rats. Behav. Brain Res. 211:169‐177.
  Sorge, R.E., Martin, L.J., Isbester, K.A., Sotocinal, S.G., Rosen, S., Tuttle, A.H., Wieskopf, J.S., Acland, E.L., Dokova, A., Kadoura, B., Leger, P., Mapplebeck, J.C., McPhail, M., Delaney, A., Wigerblad, G., Schumann, A.P., Quinn, T., Frasnelli, J., Svensson, C.I., Sternberg, W.F., and Mogil, J.S., 2014. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat. Methods 11:629‐632.
  Spiga, F., Waite, E.J., Liu, Y., Kershaw, Y.M., Aguilera, G., and Lightman, S.L. 2011. ACTH‐dependent ultradian rhythm of corticosterone secretion. Endocrinology 152:1448‐1457.
  Stratakis, C.A. and Chrousosa, G.P. 1995. Neuroendocrinology and pathophysiology of the stress system. Ann. N.Y. Acad. Sci. 29:1‐18.
  Tornatzky, W. and Miczek, K.A., 1994. Behavioral and autonomic responses to intermittent social stress: Differential protection by clonidine and metoprolol. Psychopharmacology 116:346‐356.
  Toth, E., Avital, A., Leshem, M., Richter‐Levin, G., and Braun, K. 2008. Neonatal and juvenile stress induces changes in adult social behavior without affecting cognitive function. Behav. Brain Res. 190:135‐139.
  Toufexis, D., Rivarola, M.A., Lara, H., and Viau, V. 2014. Stress and the reproductive axis. J. Neuroendocrinol. 26:573‐586.
  Trnecková, L., Armario, A., Hynie, S., Sída, P., Klenerová, V., Trneckova, L., Sida, P., and Klenerova, V. 2006. Differences in the brain expression of c‐fos mRNA after restraint stress in Lewis compared to Sprague‐Dawley rats. Brain Res. 1077:7‐15.
  Tsukiyama, N., Saida, Y., Kakuda, M., Shintani, N., Hayata, A., Morita, Y., Tanida, M., Tajiri, M., Hazama, K., Ogata, K., Hashimoto, H., and Baba, A., 2011. PACAP centrally mediates emotional stress‐induced corticosterone responses in mice. Stress 14:368‐375.
  Tuli, J.S., Smith, J.A., and Morton, D.B. 1995. Stress measurements in mice after transportation. Lab. Anim. 29:132‐138.
  Ulrich‐Lai, Y.M. and Herman, J.P. 2009. Neural regulation of endocrine and autonomic stress responses. Nat. Rev. Neurosci. 10:397‐409.
  Vahl, T.P., Ulrich‐Lai, Y.M., Ostrander, M.M., Dolgas, C.M., Elfers, E.E., Seeley, R.J., D'Alessio, D.A., and Herman, J.P. 2005. Comparative analysis of ACTH and corticosterone sampling methods in rats. Am. J. Physiol. Endocrinol. Metab. 289:E823‐E828.
  Verma, P., Hellemans, K.G.C., Choi, F.Y., Yu, W., and Weinberg, J. 2010. Circadian phase and sex effects on depressive/anxiety‐like behaviors and HPA axis responses to acute stress. Physiol. Behav. 99:276‐285.
  Viau, V. and Sawchenko, P.E. 2002. Hypophysiotropic neurons of the paraventricular nucleus respond in spatially, temporally, and phenotypically differentiated manners to acute vs. repeated restraint stress. J. Comp. Neurol. 307:293‐307.
  Walker, J.J., Terry, J.R., and Lightman, S.L. 2010. Origin of ultradian pulsatility in the hypothalamic‐pituitary‐adrenal axis. Proc. Biol. Sci. 277:1627‐1633.
  Walker, Q.D., Francis, R., Cabassa, J., and Kuhn, C.M. 2001. Effect of ovarian hormones and estrous cycle on stimulation of the hypothalamo‐pituitary‐adrenal axis by cocaine. J. Pharmacol. Exp. Ther. 297:291‐298.
  Walker, F., Naicker, S., Hinwood, M., Dunn, N., and Day, T. 2009. Strain differences in coping behaviour, novelty seeking behaviour, and susceptibility to socially conditioned fear: A comparison between Wistar and Sprague Dawley rats. Stress 12:507‐516.
  Walker, J.J., Spiga, F., Waite, E., Zhao, Z., Kershaw, Y., Terry, J.R., and Lightman, S.L. 2012. The origin of glucocorticoid hormone oscillations. PLoS Biol. 10:e1001341.
  Waters, P. and McCormick, C.M. 2011. Caveats of chronic exogenous corticosterone treatments in adolescent rats and effects on anxiety‐like and depressive behavior and hypothalamic‐pituitary‐adrenal (HPA) axis function. Biol. Mood Anxiety Disord. 1:4.
  Whitby, L., Axelrod, J., and Weil‐Malherbe, H. 1961. The fate of H3‐norepinephrine in animals. J. Pharmacol. Exp. Ther. 132:193‐201.
  Wiersma, J. and Kastelijn, J. 1985. A chronic technique for high frequency blood sampling/transfusion in the freely behaving rat which does not affect prolactin and corticosterone secretion. J. Endocrinol. 107:285‐292.
  Wiersma, J. and Kastelijn, J. 1986. Haematological, immunological and endocrinological aspects of chronic high frequency blood sampling in rats with replacement by fresh or preserved donor blood. Lab. Anim. 20:57‐66.
  Willner, P. 1997. Validity, reliability and utility of the chronic mild stress model of depression: A 10‐year review and evaluation. Psychopharmacology (Berl.) 134:319‐329.
  Willner, P. 2005. Chronic mild stress (CMS) revisited: Consistency and behavioural‐neurobiological concordance in the effects of CMS. Neuropsychobiology 52:90‐110.
  Willner, P., Muscat, R., and Papp, M. 1992. Chronic mild stress‐induced anhedonia: A realistic animal model of depression. Neurosci. Biobehav. Rev. 16:525‐534.
  Willner, P., Towell, A., Sampson, D., and Muscat, R. 1987. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 93:358‐364.
  Wood, A.M., Boyce, C.J., Moore, S.C., and Brown, G.D. 2012. An evolutionary based social rank explanation of why low income predicts mental distress: A 17 year cohort study of 30,000 people. J. Affect. Disord. 136:882‐888.
  Wood, G.E., Norris, E.H., Waters, E., Stoldt, J.T., and McEwen, B.S. 2008. Chronic immobilization stress alters aspects of emotionality and associative learning in the rat. Behav. Neurosci. 122:282‐292.
  Wotjak, C.T., Ludwig, M., Ebner, K., Russell, J.A., Singewald, N., Landgraf, R., and Engelmann, M. 2002. Vasopressin from hypothalamic magnocellular neurons has opposite actions at the adenohypophysis and in the supraoptic nucleus on ACTH secretion. Eur. J. Neurosci. 16:477‐485.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library