Studying Socio‐Affective Communication in Rats through Playback of Ultrasonic Vocalizations

Markus Wöhr1, Dominik Seffer1, Rainer K.W. Schwarting1

1 Behavioral Neuroscience, Experimental and Biological Psychology, Philipps‐University of Marburg, Marburg
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.35
DOI:  10.1002/cpns.7
Online Posting Date:  April, 2016
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Rats are able to produce ultrasonic vocalizations (USVs). Such USVs are an important component of the rat social behavior repertoire and serve distinct communicative functions as socio‐affective signals. Depending on the emotional valence of the situation, juvenile and adult rats utter (1) aversive 22‐kHz USVs conveying an appeasing and/or alarming function; or (2) appetitive 50‐kHz USVs, which act as social contact calls, amongst others. A 50‐kHz USV radial maze playback paradigm that allows assessment of the behavioral responses displayed by the recipients in a highly standardized manner has been developed. In this newly developed paradigm, a rat is exposed individually to playback of natural 50‐kHz USVs and appropriate acoustic control stimuli using an acoustic presentation system for ultrasound. By this means, it has been consistently shown that 50‐kHz USVs lead to social approach behavior in the recipient, supporting the notion that they serve an affiliative function as social contact calls. © 2016 by John Wiley & Sons, Inc.

Keywords: ultrasonic vocalization; ultrasonic communication; contact call; alarm call; social behavior; social motivation; playback

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: The 50‐kHz USV Radial Maze Playback Paradigm
  • Support Protocol 1: Sound Calibration
  • Commentary
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: The 50‐kHz USV Radial Maze Playback Paradigm

  Materials
  • Rats (at least 3 weeks of age; a minimum of 8 rats per experimental condition; 12 rats are recommended)
  • 0.1% acetic acid solution
  • Two PC workstations running Microsoft Windows XP or later
  • Light device for dim red lighting (adjustable, ∼150 cm above maze)
  • Lux meter (e.g., Testo 545 lux meter, Testo)
  • Two ultrasonic loudspeakers for playback of ultrasound (ScanSpeak, Avisoft Bioacoustics)
  • Two ultrasonic microphones for ultrasound recording (UltraSoundGate Condensor Microphone CM16/CMPA, Avisoft Bioacoustics)
  • External sound card with a sampling rate of 192 kHz (e.g., Fire Wire Audio Capture FA‐101, Edirol)
  • Portable ultrasonic power amplifier with a frequency range of 1‐125 kHz (Avisoft Bioacoustics)
  • Video camera (∼150 cm above maze, e.g., Panasonic WV‐BP 330/GE)
  • HDD recorder (e.g., Iomega Screenplay Pro, Iomega International SA)
  • Flat‐screen TV
  • Automated video tracking system (EthoVision XT, Noldus Information Technology)
  • Avisoft UltraSoundGate 416 H USB audio device for connecting microphones to PC workstation (Avisoft Bioacoustics)
  • External hard drive for data storage (e.g., 4 TB My Book, Western Digitals)
  • Computer software:
  • Avisoft SASLab Pro for generating and presenting acoustic stimuli in the ultrasonic range and data analysis (Avisoft Bioacoustics)
  • Avisoft RECORDER USGH for ultrasound recording (Avisoft Bioacoustics)
  • Folding yardstick
  • Radial eight‐arm maze (9.8 × 40.5–cm arms extending radially from a central platform with a diameter of 24 cm, elevated 52 cm above the floor, made of black plastic, and surrounded by a black curtain to minimize visual cues and to reduce sound reflections
  • Sound files of previously recorded 50‐kHz USVs and appropriate controls as stimuli

Support Protocol 1: Sound Calibration

  Materials
  • G.R.A.S. ultrasonic microphone for recording the reference sound and ultrasound recording (G.R.A.S. 46DP ⅛‐in. LEMO Pressure Standard Microphone Set, G.R.A.S. Sound & Vibration)
  • Avisoft UltraSoundGate power module and input connector for connecting ⅛‐in. microphones directly to the Avisoft UltraSoundGate 416 H USB audio device (UltraSoundGate ¼‐in. Mic Power Module with 7‐pin LEMO 1B input connector; Avisoft Bioacoustics)
  • G.R.A.S. sound calibrator for generating a reference sound (G.R.A.S. Sound Calibrator Type 42AB, G.R.A.S. Sound & Vibration)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Barfield, R.J. and Thomas, D.A. 1986. The role of ultrasonic vocalizations in the regulation of reproduction in rats. Ann. N.Y. Acad. Sci. 474:33‐43. doi: 10.1111/j.1749‐6632.1986.tb27996.x.
   Blanchard, R.J. , Blanchard, D.C. , Agullana, R. , and Weiss, S.M. 1991. Twenty‐two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol. Behav. 50:967‐972. doi: 10.1016/0031‐9384(91)90423‐L.
   Blanchard, R.J. , Agullana, R. , McGee, L. , Weiss, S. , and Blanchard, D.C. 1992. Sex differences in the incidence and sonographic characteristics of antipredator ultrasonic cries in the laboratory rat (Rattus norvegicus). J. Comp. Psychol. 106:270‐277. doi: 10.1037/0735‐7036.106.3.270.
   Bradbury, J.W. and Vehrencamp, S.L. 2011. Principals in Animal Communication. Sinauer Associates, Inc., Publishers, Sunderland, Massachusetts.
   Brenes, J.C. , Lackinger, M. , Höglinger, G.U. , Schratt, G. , Schwarting, R.K.W. , and Wöhr, M. 2016. Differential effects of social and physical environmental enrichment on brain plasticity, cognition, and ultrasonic communication in rats. J. Comp. Neurol. in press. doi: 10.1002/cne.23842. [Epub ahead of print]
   Brudzynski, S.M. 2013. Ethotransmission: Communication of emotional states through ultrasonic vocalization in rats. Curr. Opin. Neurobiol. 23:310‐317. doi: 10.1016/j.conb.2013.01.014.
   Brudzynski, S.M. and Chiu, E.M.C. 1995. Behavioural responses of laboratory rats to playback of 22 kHz ultrasonic calls. Physiol. Behav. 57:1039‐1044. doi: 10.1016/0031‐9384(95)00003‐2.
   Brudzynski, S.M. and Pniak, A. 2002. Social contacts and production of 50‐kHz short ultrasonic calls in adult rats. J. Comp. Psychol. 116:73‐82. doi: 10.1037/0735‐7036.116.1.73.
   Burgdorf, J. , Knutson, B. , Panksepp, J. , and Ikemoto, S. 2001. Nucleus accumbens amphetamine microinjections unconditionally elicit 50‐kHz ultrasonic vocalizations in rats. Behav. Neurosci. 115:940‐944. doi: 10.1037/0735‐7044.115.4.940.
   Burgdorf, J. , Wood, P.L. , Kroes, R.A. , Moskal, J.R. , and Panksepp, J. 2007. Neurobiology of 50‐kHz ultrasonic vocalizations in rats: Electrode mapping, lesion, and pharmacology studies. Behav. Brain. Res. 182:274‐283. doi: 10.1016/j.bbr.2007.03.010.
   Burgdorf, J. , Kroes, R.A. , Moskal, J.R. , Pfaus, J.G. , Brudzynski, S.M. , and Panksepp, J. 2008. Ultrasonic vocalizations of rats (Rattus norvegicus) during mating, play, and aggression: Behavioral concomitants, relationship to reward, and self‐administration of playback. J. Comp. Psychol. 122:357‐367. doi: 10.1037/a0012889.
   Endres, T. , Widmann, K. , and Fendt, M. 2007. Are rats predisposed to learn 22 kHz calls as danger‐predicting signals? Behav. Brain Res. 185:69‐75. doi: 10.1016/j.bbr.2007.07.012.
   Kim, E.J. , Kim, E.S. , Covey, E. , and Kim, J.J. 2010. Social transmission of fear in rats: The role of 22‐kHz ultrasonic distress vocalizations. PLoS One 5:e15077. doi: 10.1371/journal.pone.0015077.
   Kisko, T.M. , Himmler, B.T. , Himmler, S.M. , Euston, D.R. , and Pellis, S.M. 2015. Are 50‐kHz calls used as play signals in the playful interactions of rats? II. Evidence from the effects of devocalization. Behav. Processes 111:25‐33. doi: 10.1016/j.beproc.2014.11.011.
   Kiyokawa, Y. 2016. Social odors: Alarm pheromones and social buffering. Curr. Top. Behav. Neurosci. in press.
   Knutson, B. , Burgdorf, J. , and Panksepp, J. 1998. Anticipation of play elicits high‐frequency ultrasonic vocalizations in young rats. J. Comp. Psychol. 112:65‐73. doi: 10.1037/0735‐7036.112.1.65.
   Łopuch, S. and Popik, P. 2011. Cooperative behavior of laboratory rats (Rattus norvegicus) in an instrumental task. J. Comp. Psychol. 125:250‐253. doi: 10.1037/a0021532.
   Lore, R. , Flannelly, K. , and Farina, P. 1976. Ultrasounds produced by rats accompany decreases in intraspecific fighting. Aggress. Behav. 2:175‐181. doi: 10.1002/1098‐2337(1976)2:3%3c175::AID‐AB2480020302%3e3.0.CO;2‐7.
   Panksepp, J. , Gordon, N. , and Burgdorf, J. 2002. Empathy and the action‐perception resonances of basic socio‐emotional systems of the brain. Behav. Brain Sci. 25:43‐44. doi: 10.1017/S0140525X02350088.
   Parsana, A.J. , Li, N. , and Brown, T.H. 2012a. Positive and negative ultrasonic social signals elicit opposing firing patterns in rat amygdala. Behav. Brain Res. 226:77‐86. doi: 10.1016/j.bbr.2011.08.040.
   Parsana, A.J. , Moran, E.E. , and Brown, T.H. 2012b. Rats learn to freeze to 22‐kHz ultrasonic vocalizations through autoconditioning. Behav. Brain Res. 232:395‐399. doi: 10.1016/j.bbr.2012.03.031.
   Pultorak, J.D. , Kelm‐Nelson, C.A. , Holt, L.R. , Blue, K.V. , Ciucci, M.R. , and Johnson, A.M. 2016. Decreased approach behavior and nucleus accumbens immediate early gene expression in response to Parkinsonian ultrasonic vocalizations in rats. Soc. Neurosci. in press.
   Sadananda, M. , Wöhr, M. , and Schwarting, R.K.W. 2008. Playback of 22‐kHz and 50‐kHz ultrasonic vocalizations induces differential c‐fos expression in rat brain. Neurosci. Lett. 435:17‐23. doi: 10.1016/j.neulet.2008.02.002.
   Sales, G.D. 1972. Ultrasound and aggressive behaviour in rats and other small mammals. Anim. Behav. 20:88‐100. doi: 10.1016/S0003‐3472(72)80177‐5.
   Seffer, D. , Schwarting, R.K.W. , and Wöhr, M. 2014. Pro‐social ultrasonic communication in rats: Insights from playback studies. J. Neurosci. Methods 234:73‐81. doi: 10.1016/j.jneumeth.2014.01.023.
   Seffer, D. , Rippberger, H. , Schwarting, R.K.W. , and Wöhr, M. 2015. Pro‐social 50‐kHz ultrasonic communication in rats: Post‐weaning but not post‐adolescent social isolation leads to social impairments—Phenotypic rescue by re‐socialization. Front. Behav. Neurosci. 9:102. doi: 10.3389/fnbeh.2015.00102.
   Silverman, J.L. , Yang, M. , Lord, C. , and Crawley, J.N. 2010. Behavioural phenotyping assays for mouse models of autism. Nat. Rev. Neurosci. 11:490‐502. doi: 10.1038/nrn2851.
   Siviy, S.M. and Panksepp, J. 1987. Sensory modulation of juvenile play in rats. Dev. Psychobiol. 20:39‐55. doi: 10.1002/dev.420200108.
   Willadsen, M. , Seffer, D. , Schwarting, R.K.W. , and Wöhr, M. 2014. Rodent ultrasonic communication: Male prosocial 50‐kHz ultrasonic vocalizations elicit social approach behavior in female rats (Rattus norvegicus). J. Comp. Psychol. 128:56‐64. doi: 10.1037/a0034778.
   Willuhn, I. , Tose, A. , Wanat, M.J. , Hart, A.S. , Hollon, N.G. , Phillips, P.E. , Schwarting, R.K.W. , and Wöhr, M. 2014. Phasic dopamine release in the nucleus accumbens in response to pro‐social 50 kHz ultrasonic vocalizations in rats. J. Neurosci. 34:10616‐10623. doi: 10.1523/JNEUROSCI.1060‐14.2014.
   Wöhr, M. and Scattoni, M.L. 2013. Behavioural methods used in rodent models of autism spectrum disorders: Current standards and new developments. Behav. Brain Res. 251:5‐17. doi: 10.1016/j.bbr.2013.05.047.
   Wöhr, M. and Schwarting, R.K.W. 2007. Ultrasonic communication in rats: Can playback of 50‐kHz calls induce approach behavior? PLoS One 2:e1365. doi: 10.1371/journal.pone.0001365.
   Wöhr, M. and Schwarting, R.K.W. 2009. Ultrasonic communication in rats: Effects of morphine and naloxone on vocal and behavioral responses to playback of 50‐kHz vocalizations. Pharmacol. Biochem. Behav. 94:285‐295. doi: 10.1016/j.pbb.2009.09.008.
   Wöhr, M. and Schwarting, R.K.W. 2012. Testing social acoustic memory in rats: Effects of stimulus configuration and long‐term memory on the induction of social approach behavior by appetitive 50‐kHz ultrasonic vocalizations. Neurobiol. Learn. Mem. 98:154‐164. doi: 10.1016/j.nlm.2012.05.004.
   Wöhr, M. and Schwarting, R.K.W. 2013. Affective communication in rodents: Ultrasonic vocalizations as a tool for research on emotion and motivation. Cell Tissue Res. 354:81‐97. doi: 10.1007/s00441‐013‐1607‐9.
   Wöhr, M. , Borta, A. , and Schwarting, R.K.W. 2005. Overt behavior and ultrasonic vocalization in a fear conditioning paradigm: A dose‐response study in the rat. Neurobiol. Learn. Mem. 84:228‐240. doi: 10.1016/j.nlm.2005.07.004.
   Wöhr, M. , Houx, B. , Schwarting, R.K.W. , and Spruijt, B. 2008. Effects of experience and context on 50‐kHz vocalizations in rats. Physiol. Behav. 93:766‐776. doi: 10.1016/j.physbeh.2007.11.031.
   Wöhr, M. , Rippberger, H. , Schwarting, R.K.W. , and van Gaalen, M.M. 2015. Critical involvement of 5‐HT2C receptor function in amphetamine‐induced 50‐kHz ultrasonic vocalizations in rats. Psychopharmacol. (Berl) 232:1817‐1829. doi: 10.1007/s00213‐014‐3814‐9.
   Wöhr, M. , Engelhardt, K.A. , Seffer, D. , Sungur, A.Ö. , and Schwarting, R.K.W. 2016. Acoustic communication in rats: Effects of social experiences on ultrasonic vocalizations as socio‐affective signals. Curr. Top. Behav. Neurosci. in press.
   Yee, N. , Schwarting, R.K.W. , Fuchs, E. , and Wöhr, M. 2012. Increased affective ultrasonic communication during fear learning in adult male rats exposed to maternal immune activation. J. Psychiatr. Res. 46:1199‐1205. doi: 10.1016/j.jpsychires.2012.05.010.
Key References
   Brudzynski , 2013. See above.
  A review of the author's and others’ work describing the communicative function of ultrasonic vocalizations and their underlying brain mechanisms.
   Kisko et al., 2015. See above.
  This is a unique study showing, for the first time, that lack of 50‐kHz ultrasonic vocalizations following surgical devocalization results in a reduction of rough‐and‐tumble play in rats.
   Knutson et al., 1998. See above.
  This study is the first presentation of results showing that rats emit 50‐kHz ultrasonic vocalizations during rough‐and‐tumble play.
   Seffer et al., 2015. See above.
  This is an extensive study on the effects of social housing conditions and the first one showing that post‐weaning social isolation leads to a lack of social approach behavior elicited by playback of 50‐kHz ultrasonic vocalizations.
   Willuhn et al., 2014. See above.
  This is the first study using the operant conditioning chamber adaption of the 50‐kHz ultrasonic vocalization playback paradigm for in vivo recordings, showing that 50‐kHz but not 22‐kHz ultrasonic vocalizations elicit dopamine release in the nucleus accumbens.
   Wöhr and Schwarting , 2013. See above.
  A review of the authors’ and others’ work describing the role of ultrasonic vocalizations as socio‐affective signals with important communicative functions and how they can be used in animal models of neuropsychiatric disorders.
Internet Resources
   http://www.avisoft.com/
  Avisoft Bioacoustics’ site describes hardware and software available for investigating animal acoustic communication, including equipment to record and analyze rodent ultrasonic vocalizations and to perform playback experiments. It also includes examples of animal sounds and an overview on ultrasonic vocalizations in rodents.
   http://www.gras.dk/
  G.R.A.S. Sound & Vibration's site describes a large set of acoustic equipment, including sound calibration systems that allow calibrating sounds in the ultrasonic range as they are used in playback experiments in rats.
   http://www.noldus.com/animal‐behavior‐research.
  Noldus Information Technology's site describes several computer systems available for the automated analysis of animal behavior, including behavioral changes elicited in response to playback of ultrasonic vocalizations in rats.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library