Multisite Electrophysiology Recordings in Mice to Study Cross‐Regional Communication During Anxiety

Alexander Z. Harris1, Danielle Golder2, Ekaterina Likhtik3

1 Department of Psychiatry, Columbia University Medical Center, New York City, New York, 2 Department of Biological Sciences, Hunter College, New York City, New York, 3 CUNY Neuroscience Collaborative, The Graduate Center, New York City, New York
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 8.40
DOI:  10.1002/cpns.32
Online Posting Date:  July, 2017
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Recording neural activity in awake, freely moving mice is a powerful and flexible technique for dissecting the neural circuit mechanisms underlying pathological behavior. This unit describes protocols for designing a drive and recording single neurons and local field potentials during anxiety‐related paradigms. We also include protocols for integrating pharmacologic and optogenetic means for circuit manipulations, which, when combined with electrophysiological recordings, demonstrate input‐specific and cell‐specific contributions to circuit‐wide activity. We discuss the planning, execution, and troubleshooting of physiology experiments during anxiety‐like behavior. © 2017 by John Wiley & Sons, Inc.

Keywords: anxiety; in vivo electrophysiology; implant construction; local field potentials; multisite recordings; implant design

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Assembling and Implanting a Headstage for In Vivo Physiology During Behavioral Tasks Testing Anxiety
  • Basic Protocol 2: Incorporating Single Unit Recordings
  • Support Protocol 1: 3D Printing Small Parts for Moveable Drives
  • Support Protocol 2: Incorporating Optogenetic and Pharmacological Circuit Manipulation
  • Support Protocol 3: Making an Electrolytic Lesion to Identify Electrode Placement
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Assembling and Implanting a Headstage for In Vivo Physiology During Behavioral Tasks Testing Anxiety

  Materials
  • Mouse of interest
  • Isoflurane (e.g., Henry Schein Vet, cat. no. 029405)
  • Dexamethasone (e.g., Henry Schein Vet, cat. no. 002458)
  • Betadine
  • 100% ethanol
  • Topical anesthetic (e.g., 5 mg/ml bupivacaine; Pfizer Injectables, cat. no. 0409‐1163‐01)
  • Triple antibiotic ointment (e.g., WaterJel 2120)
  • Dental cement (e.g., A‐M Systems, cat. nos. 525000 and 526000)
  • Sterile saline (e.g., Fisher Scientific, cat. no. NC9054335)
  • Analgesic (e.g., carpofen; Henry Schein Vet, cat. no. 058739)
  • Wire cutter/stripper
  • Silver wire, 30 AWG, 0.006 in. insulation, 0.022 in. thickness (e.g., Allied Electronics, cat. no. 70134954)
  • Tungsten wire, for LFP recordings (e.g., California Fine Wire, cat. no. 100211)
  • Solder (e.g., MG Chemicals Sn99, 99.3% tin, 0.7% copper, no‐clean, lead free, 0.032 in. diameter)
  • Soldering iron (e.g., Weller WES51)
  • Flux (e.g., Harris SCLF4 Stay‐Clean Soldering Flux or MG Chemicals Rosin Activated Flux, cat. no. 835)
  • Stainless steel machine screw (plain finish, pan head, slotted drive, ASME B18.6.3, right hand threads, inch, AMS120/1P‐25)
  • Electrical interface board (EIB; e.g., Neuralynx EIB‐16)
  • Mouse brain atlas (e.g., The Mouse Brain in Stereotaxic Coordinates)
  • Autoclave or bead sterilizer
  • Surgical equipment:
    • Fine forceps (e.g., Fine Science Tools, cat. no. 11294‐00)
    • Student's forceps (e.g., Fine Science Tools, cat. no. 91110‐10)
    • Sharp scissors (e.g., Fine Science Tools, cat. no. 14060‐09)
    • Iris forceps (e.g., Fine Science Tools, cat. no. 11066‐07)
    • Dumont AA Forceps (e.g., Fine Science Tools, cat. no. 11210‐10)
    • Dura pick (e.g., Fine Science Tools, cat. no. 10065‐15)
  • Anesthesia induction chamber and ventilation system (e.g., Parkland Scientific V3000PK)
  • Small animal hair clippers (e.g., Braintree Scientific, cat. no. CLP‐9931 B)
  • 1‐ml syringe
  • 26‐G needles
  • Stereotaxic frame with stereotaxic arms (e.g., David Kopf Instruments, Model 902)
  • Temperature Controller (e.g., CWE Model TC‐1000 and part. no. 08‐13000)
  • Bone marker (e.g., Viscot Mini Surgical Fine Tip Markers)
  • Drill (e.g., Foredom K.1070 High Speed Rotary Micromotor Kit)
  • Drill burrs (e.g., Fine Science Tools, cat. nos. 19007‐05, 19007‐07, and 19007‐09)
  • Jeweler's screwdriver
  • Kimwipes
  • Cotton‐tipped applicators
  • Wooden applicators
  • Gold pins (e.g., Neuralynx EIB pins)
  • Pinner
  • Heating pad (12 in. × 15 in.)

Basic Protocol 2: Incorporating Single Unit Recordings

  Materials
  • Sterile saline (e.g., Fisher Scientific, cat. no. NC9054335)
  • Dental cement (e.g., A‐M Systems, cat. nos. 525000 and 526000)
  • Mouse of interest
  • Twister for electrode construction (e.g., Neuralynx or Open Ephys Twister made in‐house)
  • Microwires: 12.5 µm tungsten (e.g., California Fine Wire, cat. no. 100211) or nichrome 80 (e.g., Sandvik)
  • Heat gun (e.g., Paladin Tools PA1873)
  • Sharp scissors (e.g., Fine Science Tools, cat. no. 15006‐09)
  • Teflon sheet or 3D‐printed drive (e.g., Formlabs Form 1+; see protocol 3)
  • Electrical interface board (EIB; e.g., Neuralynx EIB‐16)
  • 1/4 in. and 3/8 in. stainless steel hex screws
  • Hex driver
  • Optic fiber
  • Dremel with cut‐off wheels (e.g., Dremel, cat. no. 409)
  • 20‐G and 26‐G needles
  • Dissecting microscope
  • Forceps
  • Gold pins (e.g., Neuralynx EIB pins)
  • Pinner
  • 1‐ml syringe
  • Impedance tester (e.g., NanoZ, Neuralynx, or White Matter)
  • Electroplating equipment
  • Hydraulic micromanipulator (e.g., Narishige MO‐10)
  • Self‐adhering tape (e.g., Vet Wrap Bandage)
  • Recording apparatus
  • Additional reagents and equipment for surgical setup (see protocol 1, steps 6 through 15)

Support Protocol 1: 3D Printing Small Parts for Moveable Drives

  Materials
  • Design software (e.g., Blender, RRID: SCR_008606)
  • 3D printer (e.g., Formlabs Form 1+) with associated software (e.g., PreForm)
  • Resin for 3D printing (e.g., Formlabs Black Resin, cat. no. GPBK02)
  • Isopropyl alcohol (e.g., VWR, cat. no. 470301‐474)
  • Small UV oven

Support Protocol 2: Incorporating Optogenetic and Pharmacological Circuit Manipulation

  Materials
  • 200 µm optic fibers (e.g., Thorlabs, cat. no. FT200UMT)
  • Infusion cannulas (custom built; e.g., Plastics One)
  • Electrical interface board (EIB; e.g., Neuralynx EIB‐16)
  • Razor blade
  • Silicon (e.g., Dow Corning, cat. no. 3140 RTV)
  • Omnetics connector
  • Silver paint
  • Superglue
  • Microwires or LFP wires (see Basic Protocols protocol 11 or protocol 22)
  • Ceramic ferrules (230 µm; e.g., Thorlabs, cat. no. CFLC230‐10)

Support Protocol 3: Making an Electrolytic Lesion to Identify Electrode Placement

  Materials
  • Experimental mouse
  • Ketamine
  • Xylazine
  • Input connector for EIB (e.g., Plexon, cat. no. CON/16f‐V A8858‐001)
  • Ugo Basile Lesion Making Device (e.g., Stoelting, cat. no. 53500)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

  Adey, W. R., & Walter, D. O. (1963). Application of phase detection and averaging techniques in computer analysis of EEG records in the cat. Experimental Neurology, 7, 186–209. doi: 10.1016/0014‐4886(63)90054‐2.
  Allen, B. D., Singer, A. C., & Boyden, E. S. (2015). Principles of designing interpretable optogenetic behavior experiments. Learning & Memory, 22, 232–238. doi: 10.1101/lm.038026.114.
  Allsop, S. A., Vander Weele, C. M., Wichmann, R., & Tye, K. M. (2014). Optogenetic insights on the relationship between anxiety‐related behaviors and social deficits. Frontiers in Behavioral Neuroscience, 8, 241. doi: 10.3389/fnbeh.2014.00241.
  Andreatini, R., & Bacellar, L. F. S. (1999). The relationship between anxiety and depression in animal models: A study using the forced swimming test and elevated plus‐maze. Brazilian Journal of Medical and Biological Research, 32, 1121–1126. doi: 10.1590/S0100‐879X1999000900011.
  Bowers, M. E., & Ressler, K. J. (2015). An overview of translationally informed treatments for posttraumatic stress disorder: Animal models of Pavlovian fear conditioning to human clinical trials. Biological Psychiatry, 78, E15–27. doi: 10.1016/j.biopsych.2015.06.008.
  Brunetti, P. M., Wimmer, R. D., Liang, L., Siegle, J. H., Voigts, J., Wilson, M., & Halassa, M. M. (2014). Design and fabrication of ultralight weight, adjustable multi‐electrode probes for electrophysiological recordings in mice. Journal of Visualized Experiments, 91, e51675. doi: 10.3791/51675.
  Farrell, M. S., & Roth, B. L. (2013). Pharmacosynthetics: Reimagining the pharmacogenetics approach. Brain Research, 1511, 6–20. doi: 10.1016/j.brainres.2012.09.043.
  Felix, S. H., Shah, K. G., Tolosa, V. M., Sheth, H. J., Tooker, A. C., Delima, T. L., Jadhav, S. P., Frank, L. M., & Pannu, S. S. (2013). Insertion of flexible neural probes using rigid stiffeners attached with biodissolvable adhesive. Journal of Visualized Experiments, 79, 50609. doi: 10.3791/50609.
  Ferguson, J. E., Boldt, C., & Redish, A. D. (2009). Creating low‐impedance tetrodes by electroplating with additives. Sensors and Actuators A: Physical, 156, 388–393. doi: 10.1016/j.sna.2009.10.001.
  Fonio, E., Golani, I., & Benjamini, Y. (2012). Measuring beahavior of animal models: Faults and remedies. Nature Methods, 9, 1167–1170. doi: 10.1038/nmeth.2252.
  Grosenick, L., Marshel, J. H., & Deisseroth, K. (2015). Closed‐loop and activity guided optogenetic control. Neuron, 86, 106–139. doi: 10.1016/j.neuron.2015.03.034.
  Guitchounts, G., Markowitz, J. E., Liberti, W. A., & Gardner, T. J. (2013). A carbon‐fiber electrode array for long‐term neural recording. Journal of Neural Engineering, 10, 046016. doi: 10.1088/1741‐2560/10/4/046016.
  Gunaydin, L. A., & Kreitzer, A. C. (2016). Cortico‐basal ganglia circuit function in psychiatric disease. Annual Review of Physiology, 78, 327–350. doi: 10.1146/annurev‐physiol‐021115‐105355.
  Harris, A. Z., & Gordon, J. A. (2015). Long‐range neural synchrony in behavior. Annual Review of Neuroscience, 38, 171–194. doi: 10.1146/annurev‐neuro‐071714‐034111.
  Harris, K. D., Henze, D. A., Csicsvari, J., Hirase, H., & Buzsáki, G. (2000). Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. Journal of Neurophysiology, 84, 401–4014.
  Headley, D. B., DeLucca, M. V., Haufler, D., & Paré, D. (2015). Incorporating 3D‐printing technology in the design of head‐caps and electrode drives for recording neurons in multiple brain regions. Journal of Neurophysiology, 113: 2721–2732. doi: 10.1152/jn.00955.2014.
  Henze, D. A., Borhegyi, Z., Csicsvari, J., Mamiya, A., Harris, K. D., & Buzsáki, G. (2000). Intracellular features predicted by extracellular recordings in the hippocampus in vivo. Journal of Neurophysiology, 84, 390–400.
  Hubel, D. H. (1959). Single unit activity in striate cortex of unrestrained cats. The Journal of Physiology, 147, 226–238. doi: 10.1113/jphysiol.1959.sp006238.
  Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurons in the cat's striate cortex. The Journal of Physiology, 148, 574–591. doi: 10.1113/jphysiol.1959.sp006308.
  Johansen, J. P., Wolff, S. B., Lüthi, A., & LeDoux, J. E. (2012). Controlling the elements: An optogenetic approach to understanding the neural circuits of fear. Biological Psychiatry, 71, 1053–1060. doi: 10.1016/j.biopsych.2011.10.023.
  Kale, R. P., Kouzani, A. Z., Walder, K., Berk, M., & Tye, S. J. (2015). Evolution of optogenetic microdevices. Neurophotonics, 2, 031206. doi: 10.1117/1.NPh.2.3.031206.
  Karalis, N., Dejean, C., Chaudun, F., Khoder, S., Rozeske, R. R., Wurtz, H., … Herry, C. (2016). 4‐Hz oscillations synchronize prefrontal–amygdala circuits during fear behavior. Nature Neuroscience, 19, 605–612. doi: 10.1038/nn.4251.
  Liang, L., Oline, S. N., Kirk, J. C., Schmitt, L. I., Komorowski, R. W., Remondes, M., & Halassa, M. M. (2017) Scalable, lightweight, integrated and quick‐to‐assemble (SLIQ) hyperdrives for functional circuit dissection. Frontiers in Neural Circuits, 11, 8. doi: 10.3389/fncir.2017.00008.
  Likhtik, E., Stujenske, J. M., Topiwala, M., Harris, A. Z., & Gordon, J. A. (2014). Prefrontal entrainment of amygdala activity signals safety in learned fear and innate anxiety. Nature Neuroscience, 17, 106–113. doi: 10.1038/nn.3582.
  Montgomery, S. M., & Buzsáki, G. (2007). Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance. Proceedings of the National Academy of Sciences of the United States of America, 104, 14495–14500. doi: 10.1073/pnas.0701826104.
  Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13, 1161–1169. doi: 10.1038/nn.2647.
  O'Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely‐moving rat. Branches Research, 34, 171–175. doi: 10.1016/0006‐8993(71)90358‐1.
  Pascoe, J. P., & Kapp, B. S. (1985). Electrophysiological characteristics of amygdaloid central nucleus neurons during Pavlovian fear conditioning in the rabbit. Behavioural Brain Research, 16, 117–133. doi: 10.1016/0166‐4328(85)90087‐7.
  Paylor, R., Spencer, C. M., Yuva‐Paylor, L. A., & Pieke‐Dahl, S. (2006). The use of behavioral test batteries, II: Effect of test interval. Physiology & Behavior, 87(1), 95–102. doi: 10.1016/j.physbeh.2005.09.002.
  Rank, J. B.Jr. (1973). Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. Experimental Neurology, 41, 461–531.
  Rossant, C., Kadir, S. N., Goodman, D. F., Schulman, J., Hunter, M. L., Saleem, A. B., Grosmark, A., Belluscio, M., Denfield, G. H., Ecker, A. S., Tolias, A. S., Solomon, S., Buzsáki, G., Carandini, M., & Harris, K. D. (2016). Spike sorting for large, dense electrode arrays. Nature Neuroscience, 19, 634–641. doi: 10.1038/nn.4268.
Internet Resources
  http://neuralynx.com/supplemental/Neuralynx_Plating_Solutions_and_Protocols_User_Manual.pdf
  Setup and procedure for plating electrodes
  http://likhtiklab.com/tools
  STL files for 3D printing the base and pegs for an implant
  http://www.jove.com/video/1098/micro‐drive‐array‐for‐chronic‐in‐vivo‐recording‐tetrode‐assembly
  A video protocol for constructing tetrodes for in vivo recordings
  http://www.jove.com/video/1094/micro‐drive‐array‐for‐chronic‐in‐vivo‐recording‐drive‐fabrication
  A video protocol for constructing an alternative drive for chronic recordings
  http://www.jove.com/video/51675/design‐fabrication‐ultralight‐weight‐adjustable‐multi‐electrode
  A video protocol for constructing an alternative drive for chronic recordings in mice
  http://www.jove.com/video/3568/large‐scale‐recording‐neurons‐movable‐silicon‐probes‐behaving
  A video protocol for constructing a drive for use with silicon probe electrodes
  http://www.open‐ephys.org/
  A Web site with open source resources for electrophysiology tools and equipment
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library