Preclinical Models of Hepatic Encephalopathy

Anthony S. Basile1, Kevin Mullen2

1 Laboratory of Bio‐Organic Chemistry, National Institute of Diabetes and Digestive & Kidney Diseases, NIH, Bethesda, Maryland, 2 Case Western Reserve University, Cleveland, Ohio
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.3
DOI:  10.1002/0471142301.ns0903s08
Online Posting Date:  May, 2001
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library

Abstract

Parkinson's disease is a neurodegenerative disease in which pigmented midbrain neurons progressively die producing a dopamine (DA) deficit in the striatum which manifests as an akinetic movement disorder. Experimentally induced striatal DA depletion in animals is a valid model of parkinsonism. The capacity of certain substances to damage catecholaminergic neurones has been used for a long time to produce DA deficiency in animals. This unit focuses on methods for inducing parkinsonism using the neurotoxins MPTP and 6‐hydroxy dopamine and methods for evaluating the animals. Other models are briefly reviewed.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Encephalopathy Associated with Hepatotoxin‐Induced Acute Hepatic Failure: The Galactosamine‐Treated Rabbit
  • Basic Protocol 2: Encephalopathy Associated with Hepatotoxin‐Induced Acute Hepatic Failure: The Thioacetamide‐Treated Rat
  • Basic Protocol 3: Encephalopathy Associated with Surgically Induced Acute Hepatic Failure: Ligation of Rat Hepatic Arteries
  • Basic Protocol 4: Encephalopathy Associated with Hepatotoxin‐Induced Chronic Hepatic Failure: The Carbon Tetrachloride‐Treated Rat
  • Basic Protocol 5: Encephalopathy Associated with Surgically Induced Portacaval Shunting: Rats with Sutured Portacaval Shunts
  • Alternate Protocol 1: Encephalopathy Associated with Surgically Induced Portacaval Shunting: Rats with Nonsutured (or Button) Portacaval Shunts
  • Reagents and Solutions
  • Commentary
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Encephalopathy Associated with Hepatotoxin‐Induced Acute Hepatic Failure: The Galactosamine‐Treated Rabbit

  Materials
  • 2‐kg male New Zealand White rabbits, 8 to 10 weeks old (e.g., Charles Rivers Laboratories)
  • GalN solution (see recipe)
  • Rabbit restrainer (Stoelting)
  • 10‐ml syringe
  • 25‐G butterfly infusion kit (Vacutainer; Becton Dickinson)
  • Alcohol wipes
  • Small artery clamp (Dieffenbach serrefine, Roboz Surgical Instruments)

Basic Protocol 2: Encephalopathy Associated with Hepatotoxin‐Induced Acute Hepatic Failure: The Thioacetamide‐Treated Rat

  Materials
  • Male Sprague‐Dawley rats, 200 to 250 g (e.g., Taconic Farms)
  • TAA solution (see recipe)
  • Dextrose/electrolyte solution (see recipe)
  • 0.9% (w/v) NaCl solution
  • 1‐ and 20‐ml syringes
  • 20‐ and 22‐G needles
  • Rectal thermometer
  • Heat lamp or heating pad

Basic Protocol 3: Encephalopathy Associated with Surgically Induced Acute Hepatic Failure: Ligation of Rat Hepatic Arteries

  Materials
  • Male Sprague‐Dawley rats, 250 g (e.g., Taconic Farms)
  • Nitrous oxide (Matheson Gas Products)
  • Oxygen (Matheson Gas Products)
  • Methoxyflurane (Schering)
  • Topical iodine disinfectant solution
  • Sterile saline: 0.9% (w/v) NaCl, 37°C
  • 5% (w/v) dextrose in sterile saline
  • Penicillin G
  • Veterinary gaseous anesthesia delivery instrument (Stoelting)
  • Hair clipper (Roboz Surgical Instruments)
  • Procedure board
  • 4.5‐in. (11.4‐cm) fine thumb dressing forceps (Roboz Surgical Instruments)
  • 4.5‐in. (11.4‐cm) sharp/blunt straight operating scissors (Roboz Surgical Instruments)
  • Fomon retractors (optional; Fine Science Tools)
  • 4 × 4–in., 8‐ply gauze sponges
  • 4‐in. (10‐cm) serrated microdissection forceps, curved and straight (Roboz Surgical Instruments)
  • 3‐0 and 4‐0 silk sutures
  • Curved anastomosis clamp: fashion from a 1.5‐in. (3.8‐cm) Dieffenbach serrefine clamp (Roboz Surgical Instruments) by grinding out the jaws to resemble a Satinski clamp (Funovics et al., )
  • 1‐ to 2‐mm microvascular clip and 4.75‐in. (11.4‐cm) microclip setting forceps (Roboz Surgical Instruments)
  • 4.5‐in. (11.4‐cm) angled microdissection scissors (Roboz Surgical Instruments)
  • 3.4‐in. (8.6‐cm) straight DeBakey atraumatic bulldog clamp (Roboz, Surgical Instruments)
  • 7‐0 monofilament sutures with swaged needles
  • 5.75‐in. (14.6‐cm) extra delicate, straight, Castroviejo needle holders with catch (Roboz Surgical Instruments)
  • Angled vessel dilator with 0.3‐mm tips (optional; Fine Science Tools)
  • Cutting needle, size 4
  • 4.75‐in. (11.4‐cm) extra delicate Olsen‐Hegar needle holder (Roboz Surgical Instruments)
  • 9‐mm Autoclips and applier (Roboz Surgical Instruments)
  • 3‐in. (7.6‐cm), 10‐mm blade, curved Castroviejo microdissection spring scissors (Roboz Surgical Instruments)
  • 1‐, 3‐, and 12‐ml syringes
  • 25‐G needles

Basic Protocol 4: Encephalopathy Associated with Hepatotoxin‐Induced Chronic Hepatic Failure: The Carbon Tetrachloride‐Treated Rat

  Materials
  • Male Wistar rats, 150 to 200 g (e.g., Taconic Farms)
  • Sodium phenobarbital (Sigma)
  • CCl 4 (Aldrich)
  • Methoxyflurane (Schering)
  • Oxygen
  • Veterinary gaseous anesthesia delivery instrument (Stoelting)
  • 16‐ to 18‐G curved feeding tubes with rounded tip (Roboz Surgical Instruments) attached to:
  •  Repeating pipettor (e.g., Eppendorf) with 25‐ml Combitip cartridge (Brinkmann), or
  •  12‐ml syringe
  • Animal balance with 1‐g accuracy over the range of 200 to 500 g

Basic Protocol 5: Encephalopathy Associated with Surgically Induced Portacaval Shunting: Rats with Sutured Portacaval Shunts

  • 14‐G standard‐wall Teflon tubing (Small Parts)
  • 7‐mm, ⅜‐circle taper needle
  • Toothed mosquito hemostat (Roboz Scientific Instruments)
  • 1.5‐in. (3.8‐cm) curved Dieffenbach serrefine clamp (Roboz Surgical Instruments)
  • Straight and curved anatomical forceps
  • Additional reagents and equipment for preparing anastomosis buttons (Funovics et al., ; van Dongen et al., )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

Videos

Literature Cited

Literature Cited
   Apelqvist, G., Bergqvist, P.B., Larsson, B., Bugge, M., and Bengtsson, F. 1998. Regional brain serotonin receptor changes in portacaval shunted rats. Acta Physiol. Scand. 162:509‐516.
   Ariosto, F., Riggio, O., Cantafora, A., Colucci, S., Gaudio, E., Mechelli, C., Merli, M., Seri, S., and Capocaccia, L. 1989. Carbon tetrachloride‐induced experimental cirrhosis in the rat: A reappraisal of the model. Eur. Surg. Res. 21:280‐286.
   Basile, A.S. 1996. Hepatic Encephalopathy. In Drug‐Induced Hepatotoxicity (R.G. Cameron, G. Feuer, and F.A. de la Iglesia, eds.) pp. 250‐271. Springer‐Verlag, Berlin.
   Basile, A.S., Jones, E.A., and Skolnick, P. 1991. Benzodiazepine receptor ligands in hepatic encephalopathy: Implications for pathogenesis and treatment. Pharmacol. Rev. 43:28‐71.
   Bassett, M.L., Mullen, K.D., Scholz, B., Fenstermacher, J.D., and Jones, E.A. 1990. Increased brain uptake of γ‐aminobutyric acid in a rabbit model of hepatic encephalopathy. Gastroenterology 98:747‐757.
   Bengtsson, F., Bugge, M., Vagianos, C., Jeppsson, B., and Nobin, A. 1987. Brain serotonin metabolism and behavior in rats with carbon tetrachloride‐induced liver cirrhosis. Res. Exp. Med. (Berl.) 187:429‐438.
   Bengtsson, F., Bugge, M., Brun, A., Falck, B., Henriksson, K.G., and Nobin, A. 1988. The impact of time after portacaval shunt in the rat on behavior, brain serotonin, and brain and muscle histology. J. Neurol. Sci. 83:109‐122.
   Bergqvist, P.B., Hjorth, S., Apelqvist, G., and Bengtsson, F. 1997. Potassium‐evoked neuronal release of serotonin in experimental chronic portal‐systemic encephalopathy. Metab. Brain Dis. 12:193‐202.
   Blitzer, B.L., Waggoner, J.G., Jones, E.A., Gralnick, H.R., Towne, D., Butler, J., Weise, V., Kopin, I.H., Walters, I., Teychenne, P.F., Goodman, D.G., and Berk, P.D. 1978. A model of fulminant hepatic failure in the rabbit. Gastroenterology 74:664‐671.
   Bosman, D.K., van den Buijs, C.A.C.G., de Haan, J.G., Maas, M.A.W., and Chamuleau, R.A.F.M. 1991. The effects of benzodiazepine receptor antagonists and partial inverse agonists on acute hepatic encephalopathy in the rat. Gastroenterology 101:772‐781.
   Bosman, D.K., Deutz, N.E.P., Maas, M.A.W., van Eijk, H.M.H., Smit, J.J.H., de Haan, J.G., and Chamuleau, R.A.F.M. 1992. Amino acid release from cerebral cortex in experimental acute liver failure, studied by in vivo cerebral cortex microdialysis. J. Neurochem. 59:591‐599.
   Brachtel, Z. and Richter, E. 1986. Galactosamine‐induced acute liver failure in the guinea pig: Spontaneous course and controlled study conditions. Gastroenterology 24:188‐194.
   Butterworth, R.F., Le, O., Lavoie, J., and Szerb, J.C. 1991. Effect of portacaval anastomosis on electrically stimulated release of glutamate from rat hippocampal slices. J. Neurochem. 56:1481‐1484.
   Chamuleau, R.A.F.M., Deutz, N.E.P., de Haan, J.G., and van Gool, J. 1987. Correlation between electroencephalographic and biochemical indices in acute hepatic encephalopathy in rats. J. Hepatol. 4:299‐306.
   Conjeevaram, H.S., Mullen, K.D., May, E.J., and McCullough, A.J. 1994a. Gender dependent reduction of spontaneous motor activity and growth in rats subjected to portacaval shunts. Hepatology 19:381‐399.
   Conjeevaram, H.S., Nagle, A., Katz, A., Kaminsky‐Russ, K., and Mullen, K.D. 1994b. Reversal of behavioral changes in rats subjected to portacaval‐shunt with oral neomycin therapy. Hepatology 19:1245‐1250.
   Coy, D., Srivastava, A., Gottstein, J., Butterworth, R.F., and Blei, A.T. 1991. Postoperative course after portacaval anastomosis is determined by the portacaval pressure gradient. Am. J. Physiol. 261:G1072‐G1078.
   Decker, K. and Keppler, D. 1972. Galactosamine induced liver injury. In Progress in Liver Diseases, Vol. 4 (H. Popper and F. Schaffner, eds.) pp 183‐196. Grune & Stratton, New York.
   Dejong, C.H.C., Kampman, M.T., Deutz, N.E.P., and Soeters, P.B. 1992. Cerebral cortex ammonia and glutamine metabolism during liver insufficiency‐induced hyperammonemia in the rat. J. Neurochem. 59:1071‐1079.
   Fick, T.E., Schalm, S.W., and De Vlieger, M. 1987. A surgical model of fulminant hepatic failure in the rabbit: Different effects of end‐to‐side versus small‐diameter portacaval shunt. Eur. Surg. Res. 19:276‐282.
   Funovics, J.M., Cummings, M.G., Shuman, L., James, J.H., and Fischer, J.E. 1975. An improved non‐suture method for portacaval anastomosis in the rat. Surgery 77:661‐664.
   Gammal, S., Basile, A.S., Geller, D., Skolnick, P., and Jones, E.A. 1990. Hepatic encephalopathy in an improved model of the thioacetamide‐treated rat: Evidence for mediation by the benzodiazepine receptor. Hepatology 11:371‐378.
   Giguere, J.F. and Butterworth, R.F. 1984. Amino acid changes in regions of the CNS in relation to function in experimental portalsystemic encephalopathy. Neurochem. Res. 9:1309‐1321.
   Giguere, J.F., Hamel, E., and Butterworth, R.F. 1992. Increased densities of binding sites for the 'peripheral‐type' benzodiazepine receptor ligand [3H]PK 11195 in rat brain following portacaval anastomosis. Brain Res. 585:295‐298.
   Hamberger, A. and Nystrom, B. 1984. Extra and intracellular amino acids in the hippocampus during development of hepatic encephalopathy. Neurochem. Res. 9:1181‐1192.
   Horowitz, M.E., Schafer, D.R., Molnar, P., Jones, E.A., Blasberg, E.G., Patlak, C.S., Waggoner, J.S., and Fenstermacher, J.D. 1983. Increased blood‐barrier transfer in a rabbit model of acute liver failure. Gastroenterology 84:1003‐1011.
   Huston, J.P. and Buresova, O. 1983. Innate and motivated behavior. In Techniques and Basic Experiments for the Study of Brain and Behavior (J. Bures, O. Buresova, and J.P. Huston, eds.) pp. 77‐126. Elsevier/North‐Holland, Amsterdam.
   Jerkins, A.A. and Steele, R.D. 1988. Diet composition and surgical technique influences the post‐operative recovery of portacaval shunted rats. Hepatology 8:855‐860.
   Jones, D.B., Mullen, K.D., Roessle, M., Maynard, T., and Jones, E.A. 1987. Hepatic encephalopathy: Application of visual evoked responses to test hypotheses of its pathogenesis in rats. J. Hepatol. 4:118‐126.
   Kraft, L.M. 1982. Viral diseases of the digestive system: Murine hepatitis virus infection. In The Mouse in Biomedical Research, Vol. II (H.L. Foster, J.D. Small, and J.C. Fox) pp. 173‐184. Academic Press, New York.
   Lee, S.H. and Fischer, B. 1961. Portacaval shunt in the rat. Surgery 50:668‐672.
   Mans, A.M., Saunders, S.J., Kirsch, R.E., and Biebuyck, J.F. 1979. Correlation of plasma and brain amino acid and putative neurotransmitter alterations during acute hepatic coma in the rat. J. Neurochem. 32:285‐292.
   Martin, P., Ferreira, M.R., and Gammal, S.H. 1989. The rat with carbon tetrachloride induced cirrhosis as a model of hepatic encephalopathy. In Hepatic Encephalopathy, Pathophysiology and Treatment (R.F. Butterworth and G. Pomier Layrargues, eds.) pp. 261‐270. Humana Press, Clifton, N.J.
   Mullen, K.D. and McCullough, A.J. 1989. Problems with animal models of chronic liver disease: Suggestions for improvement in standardization. Hepatology 9:500‐503.
   Mullen, K.D. and Dasarathy, S. 1999. Hepatic Encephalopathy. In Schiff's Diseases of the Liver (E.R. Schiff, M. Sorrell, and W.C. Maddrey, eds.) pp. 545‐581. Lippincott‐Raven, Philadelphia.
   Mullen, K.D., Mendelson, W.B., Martin, J.V., Roessle, M., Maynard, T.F., and Jones, E.A. 1988a. Could an endogenous benzodiazepine ligand contribute to hepatic encephalopathy? Lancet I:457‐459.
   Mullen, K.D., Schafer, D.F., Cuchi, P., Rossle, M., Maynard, T.F., and Jones, E.A. 1988b. Evaluation of the suitability of galactosamine‐induced fulminant hepatic failure as a model of hepatic encephalopathy in the rat and the rabbit. In Advances in Ammonia Metabolism and Hepatic Encephalopathy (P.B. Soeters, J.H.P. Wilson, A.J. Meijer, and E. Holm, eds.) pp. 205‐212. Elsevier/North‐Holland, Amsterdam.
   Mullen, K.D., Roessle, M., Jones, D.B., Grun, M., and Jones, E.A. 1997. Precipitation of overt encephalopathy in the portacaval shunted rat: Towards the development of an adequate model of chronic portal systemic encephalopathy. Eur. J. Gastroenterol. Hepatol. 9:293‐298.
   Norenberg, M.D., Huo, Z., Neary, JT., and Roig‐Cantesano, A. 1997. The glial glutamate transporter in hyperammonemia and hepatic encephalopathy: Relation to energy metabolism and glutamatergic neurotransmission. Glia 21:124‐133.
   Olde Damink, S.W.M.O., Dejong, C.H.C., Deutz, N.E.P., and Soeters, P.B. 1997. Effects of simulated upper gastrointestinal hemorrhage on ammonia and related amino acids in blood and brain of chronic portacaval‐shunted rats. Metab. Brain Dis. 12:121‐135.
   Peeling, J., Shoemaker, L., Gauthier, T., Bennaroch, A., Sutherland, G.R. Minuk, G.Y. 1993. Cerebral metabolic and histological effects of thioacetamide induced liver failure. Am. J. Physiol. 265:G572‐G578.
   Peignoux, M., Bernuau, J., and Benhamou, J.F. 1982. Total hepatectomy and hepatic vascular exclusion in the rat. A comparison with special reference to the influence of body temperature. Clin. Sci. 62:273‐277.
   Perlman, S., Schelper, R., Bolger, E., and Ries, D. 1987. Late onset symptomatic, demyelinating encephalomyelitis in mice infected with MHV‐JHM in the presence of maternal antibody. Microb. Pathog. 2:185‐194.
   Pluta, R. and Albrecht, J. 1984. Changes in arterial and cerebral venous blood gases, cerebral blood flow and cerebral oxygen consumption at different stages of thioacetamide‐induced hepatogenic encephalopathy in rat. Resuscitation 14:135‐139.
   Porter, W.R., Gudzinowicz, M.J., and Neal, R.A. 1979. Thioacetamide‐induced hepatic necrosis. II. Pharmacokinetics of thioacetamide and thioacetamide‐S‐oxide in the rat. J. Pharmacol. Exp. Ther. 208:386‐391.
   Proctor, D.E. and Chatamra, K. 1982. High yield micronodular cirrhosis in the rat. Gastroenterology 83:1183‐1190.
   Rechnagel, R.O. and Glende, E.A. Jr. 1973. Carbon tetrachloride hepatotoxicity: An example of lethal cleavage. CRC Crit. Rev. Toxicol. 2:263‐297.
   Rzepczynski, D., Zieve, L., Lindblad, S., and LaFontaine, D. 1986. In vivo studies of GABAergic effects in experimental hepatic encephalopathy. Hepatology 6:902‐905.
   Schafer, D.F., Pappas, S.C., Brody, L.E., Jacobs, R., and Jones, E.A. 1984. Visual evoked potentials in a rabbit model of hepatic encephalopathy. Gastroenterology 86:540‐545.
   Sherlock, S. 1993. Fulminant hepatic failure. In Advances in Internal Medicine, Vol. 38 (J.T. LaMont, ed.) pp. 245‐267. Mosby‐Year Book, New York.
   Swain, M.S., Blei, A.T., Butterworth, R.F., and Kraig, R.P. 1991. Intracellular pH rises and astrocytes swell after portacaval anastomosis in rats. Am. J. Physiol. 261:R1491‐R1496.
   Tabata, Y. and Chang, T.M.S. 1980. Comparisons of six artificial liver support regimes in fulminant hepatic coma rats. Trans. Am. Soc. Artif. Intern. Organs 26:394‐398.
   Tamayo, R.P. 1983. Is cirrhosis of the liver experimentally produced by CCl4 an adequate model of human cirrhosis? Hepatology 3:112‐118.
   Ten Berg, R.G.M., Ernst, P., van Maldegem‐Dronkers, C., Marquet, R., and Westbroek, D.L. 1985. Effect of viable isolated hepatocytes or hepatocyte fraction on survival rate following galactosamine induced acute liver failure. Eur. Surg. Res. 17:109‐118.
   Teran, J.C., Mullen, K.D., Conjeevaran, H., Kaminsky‐Russ, K., and McCullough, A.J. 1995. Effect of a casein‐purified diet on the growth of portacaval shunted rats. In Advances in Hepatic Encephalopathy and Metabolic Nitrogen Exchange (L. Capocaccia, M. Merli, and O. Riggio, eds.) pp. 293‐303. CRC Press, Boca Raton, Fla.
   Thompson, J.S., Schafer, D.F., Haun, J., and Schafer, G.J. 1986. Adequate diet prevents hepatic encephalopathy in dogs with Eck Fistula. Surg. Gynecol. Obstet. 162:126‐131.
   Tonnesen, K. and Balling, H. 1986. Cerebral flow and metabolism in experimental liver failure. Acta Chir. Scand. 152:439‐445.
   Tossman, U., Delin, A., Eriksson, L.S., and Ungerstedt, U. 1987. Brain cortical amino acids measured by intracerebral dialysis in portacaval shunted rats. Neurochem. Res. 12:265‐269.
   Traber, P.G., Ganger, D.R., and Blei, A.T. 1986. Brain edema in rabbits with galactosamine‐induced fulminant hepatitis. Gastroenterology 91:1347‐1356.
   Traber, P.G., Dal Canto, M., Ganger, D., and Blei, A.T. 1987. Electron microscopic evaluation of brain edema in rabbits with galactosamine‐induced fulminant hepatic failure. Hepatology 7:1272‐1277.
   Traber, P., dal Canto, M., Ganger, D., and Blei, A.T. 1989. Effect of body temperature on brain edema and encephalopathy in the rat after hepatic devascularization. Gastroenterology 96:885‐891.
   van Dongen, J.J., Remie, R., Rensema, J.W., and van Wunnik, G.H.J. 1990. Manual of Microsurgery on the Laboratory Rat. Elsevier/North‐Holland, Amsterdam.
   Yurdaydin, C., Hortnagl, H., Steindl, P., Zimmermann, C., Pifl, C., Singer, E.A., Roth, E., and Ferenci, P. 1990. Increased serotoninergic and noradrenergic activity in hepatic encephalopathy in rats with thioacetamide‐induced acute liver failure. Hepatology 12:695‐700
   Yurdaydin, C., Gu, Z.‐Q., Fromm, C., Holt, G., and Basile, A.S. 1993. Benzodiazepine receptor ligands in an animal model of hepatic encephalopathy: Correlation between concentration, severity of encephalopathy and benzodiazepine receptor antagonist efficacy. J. Pharmacol. Exp. Ther. 265:565‐571.
   Yurdaydin, C., Li, Y., Rothman, R., Jones, E.A., and Basile, A.S. 1995. Alterations in brain and plasma levels of opioid peptides in rats with thioacetamide‐induced fulminant hepatic failure: Amelioration of motor deficits following opiate antagonist administration. J. Pharmacol. Exp. Ther. 273:185‐192.
   Ward, J.M., Anver, M.R., Haines, D.C., and Benveniste, R.E. 1994. Chronic active hepatitis in mice caused by Helicobacter hepaticus. Am. J. Pathol. 145:959‐968.
   Waynforth, H.B. and Flecknell, P.A. 1992. Experimental and Surgical Technique in the Rat. Academic Press, London.
   Webster, S., Gottstein, J., Levy, R., and Blei, A.T. 1991. Intracranial pressure and intracranial hypertension in rats with ischemic acute liver failure. Hepatology 14:715‐720.
   Yamamoto, H.A. 1990. Brain phenylalanine and tyrosine levels and hepatic encephalopathy induced by CCl4 in rats. Toxicology 61:241‐247.
   Yamamoto, H.A. and Sugihara, N. 1987. Blood ammonia levels and hepatic encephalopathy induced by CCl4 in rats. Toxicol. Appl. Pharmacol. 91:461‐468.
   Zeneroli, M.L. 1985. Hepatic encephalopathy—Experimental studies in a rat model of fulminant hepatic failure. J. Hepatol. 1:301‐312.
   Zieve, L., Doizaki, W.M., and Lyftogt, C. 1984. Brain methanethiol and ammonia concentrations in experimental hepatic coma and coma induced by injection of a combination of these substances. J. Lab. Clin. Med. 104:665‐674
   Zimmermann, C., Ferenci, P., Pifl, C., Yurdaydin, C., Ebner, J., Lassmann, H., Roth, E., and Hortnagl, H. 1989. Hepatic encephalopathy in thioacetmide‐induced acute liver failure in rats: Characterization of an improved model and study of amino acidergic neurotransmission. Hepatology 9:594‐601.
Key References
  Basile, 1996. See above.
  Recent review of neurotransmitter changes in humans with liver failure and several popular animal models of hepatic encephalopathy
   Mullen, K.D., Birgisson, S., Ga, R.C., and Conjeevaran, H. 1994. Animal models of hepatic encephalopathy and hyperammonemia. In Hepatic Encephalopathy, Hyperammonemia and Ammonia Toxicity (V. Felipo and S. Grisolia, eds.) pp. 1‐10. Plenum Press, New York.
  Codifies the problems associated with the application of several models of liver failure to the study of hepatic encephalopathy.
   Mullen and Dasarathy, 1999. See above.
  Good review of the characteristics of hepatic encephalopathy in humans, along with the criteria for a more accurate system for characterizing and staging hepatic encephalopathy.
  van Dongen, 1990. See above.
  Excellent source of surgical techniques necessary for the production of PCS and HAL rats.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library