Models of Neuropathic Pain in the Rat

Gary J. Bennett1, Jin Mo Chung2, Marie Honore3, Ze'ev Seltzer4

1 McGill University, Montreal, Quebec, 2 Marine Biomedical Institute, Galveston, Texas, 3 Abbott Laborotories, Abbott Park, Illinois, 4 University of Toronto, Toronto, Ontario
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.14
DOI:  10.1002/0471142301.ns0914s22
Online Posting Date:  May, 2003
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


There are now three models of neuropathic pain in the rat that are in widespread use: the chronic constriction injury, the partial sciatic ligation model, and the spinal nerve ligation model. The procedures to create these models and the behavioral assays used to quantify the resulting abnormal pain sensations are described in this unit.

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: The Chronic Constriction Injury (CCI) Model of Neuropathic Pain
  • Basic Protocol 2: The Partial Sciatic (PSL) Model of Neuropathic Pain
  • Basic Protocol 3: The Spinal Nerve Ligation (SNL) Model of Neuropathic Pain
  • Support Protocol 1: Behavioral Assays: Heat‐Hyperalgesia
  • Support Protocol 2: Behavior Assays: Mechano‐Hyperalgesia
  • Support Protocol 3: Behavioral Assays: Mechano‐Allodynia
  • Support Protocol 4: Behavioral Assays: Cold Allodynia
  • Commentary
  • Literature Cited
  • Figures
  • Tables
PDF or HTML at Wiley Online Library


Basic Protocol 1: The Chronic Constriction Injury (CCI) Model of Neuropathic Pain

  • Saline, sterile
  • Adult male rats (e.g., Sprague‐Dawley; see Critical Parameters for animal considerations)
  • Anesthetic (e.g., sodium pentobarbital; see Critical Parameters for anesthesia considerations)
  • Topical disinfectant (e.g., Betadine)
  • Rat chow (e.g., phytoestrogen‐free rat chow, see Critical Parameters for diet considerations)
  • 4‐0 chromic gut suture
  • Animal clippers
  • Animal heating pad
  • ∼4‐cm diameter rod (e.g., rolled‐up paper toweling or gauze)
  • Scalpel
  • Rat‐toothed forceps
  • Blunt‐tipped scissors
  • Dissecting microscope
  • No. 5 jeweler's forceps
  • Microscissors
  • Blunt‐tipped curved forceps
  • Sutures to close surgical incision
  • Cages with solid floors and soft bedding (e.g., sawdust as opposed to corn cobs or coarse wood chips)

Basic Protocol 2: The Partial Sciatic (PSL) Model of Neuropathic Pain

  • Ophthalmic needle with attached suture (3/8) curved, reversed‐cutting mini‐needle attached to 8‐0 silicone‐treated silk)

Basic Protocol 3: The Spinal Nerve Ligation (SNL) Model of Neuropathic Pain

  • Small rongeur (e.g., 2 mm jaw‐width)
  • 6‐0 silk suture
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Attal, N., Jazat, F., Kayser, V., and Guilbaud, G. 1990. Further evidence for “pain‐related” behaviours in a model of unilateral peripheral mononeuropathy. Pain 41:235‐251.
   Attal, N., Chen, Y.L., Kayser, V., and Guilbaud, G. 1991. Behavioural evidence that systemic morphine may modulate a phasic pain‐related behaviour in a rat model of mononeuropathy. Pain 47:65‐70.
   Bennett, G.J. and Hargreaves, K.M. 1990. Reply to Dr. Hirata and his colleagues. Pain 42:255.
   Bennett, G.J. and Xie, Y.‐K. 1988. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87‐107.
   Boyce, S., Wyatt, A., Webb, J.K., O'Donnell, R., Mason, G., Rigby, M., Sirinathsinghji, D., Hill, R.G., and Rupniak, N.M.J. 1999. Selective NMDA NR2B antagonists induce antinociception without motor dysfunction: Correlation with restricted localization of NR2B subunit in dorsal horn. Neuropharmacology 38:611‐623.
   Bucinskaite, V., Lundeburg, T., Stenfors, C., Belfrage, M., Hansson, P., and Theodorsson, E. 1995. Changes of neuropeptide concentrations in the brain following experimentally induced mononeuropathy in Wistar Kyoto and spontaneously hypertensive rats. Neurosci. Lett. 192:93‐96.
   Chaplan, S.R., Bach, F.W., Pogrel, J.W., Chung, S.M., and Yaksh, T.L. 1994. Quantitative assessment of tactile allodynia in the rat paw. J. Neurosci. Meth. 53:55‐63.
   Choi, Y., Yoon, Y.W., Na, H.S., Kim, S.H., and Chung, J.M. 1994. Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59:369‐376.
   Chung, J.M., Choi, Y., Yoon, Y.W., and Na, H.S. 1995. Effects of age on behavioral signs of neuropathic pain in an experimental rat model. Neurosci. Lett. 183:54‐57.
   Dougherty, P.M., Garrison, C.J., and Carlton, S.M. 1992. Differential influence of local anesthetic upon two models of experimentally‐induced peripheral mononeuropathy in the rat. Brain Res. 570:109‐115.
   Eliav, E., Herzburg, U., Ruda, M.A., and Bennett, G.J. 1999. Neuropathic pain from an experimental neuritis of the rat sciatic nerve. Pain 83:169‐182.
   Esser, M.J. and Sawynok, J. 1999. Acute amitriptyline in a rat model of neuropathic pain: Differential symptom and route effects. Pain 80:643‐653.
   Fields, H.L., Rowbotham, M., and Baron, R. 1988. Postherpetic neuralgia: Irritable nociceptors and deafferentation. Neurobiol. Dis. 5:209‐227.
   Gonzalez, M.I., Field, M.J., Hughes, J., and Singh, L. 2000. Evaluation of selective NK1 receptor antagonist CI‐1021 in animal models of inflammatory and neuropathic pain. J. Pharmacol. Exp. Ther. 294:444‐450.
   Graham, B.A., Hammond, D.L., and Proudfit, H.K. 1997. Differences in the antinociceptive effects of alpha‐2 adrenoceptors in two substrains of Sprague‐Dawley rats. J. Pharmacol. Exp. Ther. 283:511‐519.
   Greene, E.C. 1963. Anatomy of the Rat. Hafner, New York.
   Hargreaves, K., Dubner, R., Brown, F., Flores, C., and Joris, J. 1988. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32:77‐88.
   Hirata, H., Pataky, A., Kajander, K., LaMotte, R.H., and Collins, J.G. 1990. A model of peripheral mononeuropathy in the rat. Pain 42:253‐254.
   Hunter, J.C., Gogas, K.R., Hedley, L.R., Jacobson, L.O., Kassotakis, L., Thompson, J., and Fontana, D.J. 1997. The effects of novel anti‐epileptic drugs in rat experimental models of acute and chronic pain. Euro. J. Pharmacol. 324:153‐160.
   Jett, M.F., McGuirk, J., Waligora, D., and Hunter, J.C. 1997. The effects of mexiletine, desipramine and fluoxetine in rat models involving centralsensitization. Pain 69:161‐169.
   Kim, S.H. and Chung, J.M. 1992. An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355‐363.
   Kim, K.J., Yoon, Y.W., and Chung, J.M. 1997. Comparison of three rodent neuropathic pain models. Exptl. Brain Res. 113:200‐206.
   Koltzenburg, M., Wall, P.D., and McMahon, S.B. 1999. Does the right side know what the left is doing? Trends Neurosci. 22:122‐127.
   Kupers, R.C., Nuytten, D., De Castro‐Costa, M., and Gybels, J.M. 1992. A time course study of the changes in spontaneous and evoked behaviour in a rat model of neuropathic pain. Pain 50:101‐112.
   Merskey, H. and Bogduk, N. 1994. Classification of Chronic Pain: Descriptions of Chronic Pain Syndromes and Definitions of Pain Terms. pp. 209‐213. IASP Press, Seattle.
   Möller, K.A., Johansson, B., and Berge, O.‐G. 1998. Assessing mechanical allodynia in the rat paw with a new electronic algometer. J. Neurosci. Meth. 84:41‐47.
   Mosconi, T. and Kruger, L. 1996. Fixed‐diameter polyethylene cuffs applied to the rat sciatic nerve induce a painful neuropathy: Ultrastructural morphometric analysis of axonal alterations. Pain 64:37‐57.
   Ossipov, M.H., Lopez, Y., Nichols, M.L., Bian, D., and Porreca, F. 1995. The loss of antinociceptive efficacy of spinal morphine in rats with nerve ligation is prevented by reducing spinal afferent drive. Neurosci. Lett. 199:87‐90.
   Randall, L.O. and Sellito, J.J. 1957. A method for measurement of analgesic activity on inflamed tissue. Arch. Int. Pharmacodyn. 4:409‐419.
   Seltzer, Z., Dubner, R., and Shir, Y. 1990. A novel behavioral model of neuropathic pain disorders produced in rats by partial sciatic nerve injury. Pain 43:205‐218.
   Semmes, J., Weinstein, S., Ghent, L., and Teuber, H.‐L. 1960. Somatosensory Changes After Penetrating Brain Wounds in Man. Harvard Univ. Press, Cambridge.
   Shir, Y., Raber, P., Devor, M., and Seltzer, Z. 1991. Mechano‐ and thermo‐sensitivity in rats genetically prone to developing neuropathy. NeuroReport 2:313‐316.
   Shir, Y., Ratner, A., Raja, S.N., Campbell, J.N., and Seltzer, Z. 1998. Neuropathic pain following partial nerve injury in rats is suppressed by dietary soy. Neurosci. Lett. 240:73‐76.
   Shir, Y., Zeltser, R., Vatine, J.J., Carmi, G., Belfer, I., Zangen, A., Overstreet, D., Raber, R., and Seltzer, Z. 2001. Correlation of intact sensibility and neuropathic pain‐related behaviors in eight rat strains and selection lines. Pain 90:75‐82.
   Simkins, M.D., Shadiack, A.M., Burns, C.A., Molino, M.J., Amaratunga, D., Hall, J., Rogers, K.E., and Clark, L.P. 1998. Evaluation of post‐operative analgesics in a model of neuropathic pain. Contemp. Topics Lab Anim. Sci. 37:61‐63.
   Tal, M. and Bennett, G.J. 1993. Dextrorphan relieves neuropathic heat‐evoked hyperalgesia. Neurosci. Lett. 151:107‐110.
   Tal, M. and Bennett, G.J. 1994. Extra‐territorial pain in rats with a peripheral mononeuropathy: Mechano‐hyperalgesia and mechano‐allodynia in the territory of an uninjured nerve. Pain 57:375‐382.
   Tanck, E.N., Kroin, J.S., McCarthy, R.J., Penn, R.D., and Ivankovich, A.D. 1992. Effects of age and size on development of allodynia in a chronic pain model produced by sciatic nerve ligation in rats. Pain 51:313‐316.
   Yoon, Y.W., Lee, D.H., Lee, B.H., Chung, K., and Chung, J.M. 1999. Different strains and substrains of rats show different levels of neuropathic pain behaviors. Exp. Brain Res. 129:167‐171.
   Zeltzer, R. and Seltzer, Z. 1994. A practical guide for the use of animal models for neuropathic pain. In Touch, Temperature, and Pain. (J. Boive, P. Hansson, and U. Lindblom, eds.) pp.337‐379. IASP Press, Seattle.
   Zimmermann, M. 1983. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16:109‐110.
PDF or HTML at Wiley Online Library