Animal Models of Painful Diabetic Neuropathy: The STZ Rat Model

Thomas J. Morrow1

1 VA Medical Center, University of Michigan, Ann Arbor, Michigan
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.18
DOI:  10.1002/0471142301.ns0918s29
Online Posting Date:  November, 2004
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


Painful peripheral neuropathy is a common secondary complication of diabetes. The streptozotocin (STZ)‐induced diabetic rat is the most commonly employed animal model used to study mechanisms of painful diabetic neuropathy and to evaluate potential therapies. A low dose STZ protocol is described for inducing experimental diabetes in the rat. Several behavioral assays are described, which are routinely used to assess different aspects of neuropathic pain in this animal model of diabetes mellitus, including mechanical allodynia and heat hyperalgesia.

Keywords: streptozotocin; STZ; experimental type I diabetes mellitus; peripheral polyneuropathy; neuropathic pain

PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Induction of Diabetes with STZ
  • Support Protocol 1: Measurement of Blood Glucose
  • Support Protocol 2: Quantification of Mechanical Allodynia: The Electronic Von Frey Method
  • Support Protocol 3: Assessment of Heat Hyperalgesia
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
PDF or HTML at Wiley Online Library


Basic Protocol 1: Induction of Diabetes with STZ

  • Adult rats (e.g., ∼225‐g Sprague‐Dawley; see )
  • STZ (see recipe)
  • Sodium citrate buffer, pH 5.5 (see recipe)
  • 10% sucrose (Sigma) in tap water (store up to 3 days at 5° to 10°C)
  • Animal scale
  • Conical test tube or equivalent with screw top, sterile
  • Aluminum foil
  • 1‐ml TB or insulin syringes with 26‐ to 28‐G needles
  • Cages with solid floors and soft bedding
  • Additional materials and reagents for measuring blood glucose levels (see protocol 2)

Support Protocol 1: Measurement of Blood Glucose

  • Rat injected with STZ or vehicle (see protocol 1Basic Protocol 1)
  • Glucometer and test strips (e.g., LifeScan OneTouch Ultra Blood Glucose Meter)
  • Terry cloth hand towel or equivalent
  • Lancets (e.g., OneTouch Ultra microlancets)
PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Ahlgren, S.C. and Levine, J.D. 1993. Mechanical hyperalgesia in streptozotocin‐diabetic rats. Neuroscience 52:1049‐1055.
   Ahroni, P., Boyko, E.J., Davignon, D.R., and Pecson, R.D. 1994. The health and functional status of veterans with diabetes. Diabet. Care 17:319‐321.
   Benbow, J., Chan, A.W., Bowsher, D., MacFarlane, I.A., and Williams, G. 1994. A prospective study of painful symptoms, small‐fibre function and peripheral vascular disease in chronic painful diabetic neuropathy. Diabet. Med. 17‐21.
   Calcutt, N.A. 2002. Potential mechanisms of neuropathic pain in diabetes. Int. Rev. Neurobiol. 50:205‐228.
   Calcutt, N.A. and Chaplan, S.R. 1997. Spinal pharmacology of tactile allodynia in diabetic rats. Br. J. Pharmacol. 122:1478‐1482.
   Calcutt, N.A., Jorge, M.C., Yaksh, T.L., and Chaplan, S.R. 1996. Tactile allodynia and formalin hyperalgesia in streptozotocin‐ diabetic rats: Effects of insulin, aldose reductase inhibition and lidocaine. Pain 68:293‐299.
   Chung, J.M., Choi, Y., Yoon, Y.W., and Na, H.S. 1995. Effects of age on behavioral signs of neuropathic pain in an experimental rat model. Neurosci. Lett. 183:54‐57.
   Courteix, C., Eschalier, A., and Lavarenne, J. 1993. Streptozocin‐induced diabetic rats: Behavioural evidence for a model of chronic pain. Pain 53:81‐88.
   Courteix, C., Bardin, M., Chantelauze, C., Lavarenne, J., and Eschalier, A. 1994. Study of the sensitivity of the diabetes‐induced pain model in rats to a range of analgesics. Pain 57:153‐160.
   Forman, L.J., Estilow, S., Lewis, M., and Vasilenko, P. 1986. Streptozocin diabetes alters immunoreactive beta‐endorphin levels and pain perception after 8 wk in female rats. Diabetes 35:1309‐1313.
   Fox, A., Eastwood, C., Gentry, C., Manning, D., and Urban, L. 1999. Critical evaluation of the streptozotocin model of painful diabetic neuropathy in the rat. Pain 81:307‐316.
   Graham, B.A., Hammond, D.L., and Proudfit, H.K. 1997. Differences in the antinociceptive effects of alpha‐2 adrenoceptor agonists in two substrains of Sprague‐Dawley rats. J. Pharm. Exp. Therapeut. 283:511‐519.
   Hargreaves, K., Dubner, R., Brown, F., Flores, C., and Joris, J. 1988. A new sensitive method for measuring thermal nociception in cutaneous hyperalgesia (PAI 01152). Pain 32:77‐88.
   Khan, G.M., Chen, S.R., and Pan, H.L. 2002. Role of primary afferent nerves in allodynia caused by diabetic neuropathy in rats. Neuroscience 114:291‐299.
   Kupers, R.C., Nuytten, D., De Castro‐Costa, M., and Gybels, J.M. 1992. A time course analysis of the changes in spontaneous and evoked behaviour in a rat model of neuropathic pain. Pain 50:101‐111.
   Lee, J.H. and McCarty, R. 1990. Glycemic control of pain threshold in diabetic and control rats. Physiol. Behav. 47:225‐230.
   Lee, J.H. and McCarty, R. 1992. Pain threshold in diabetic rats: Effects of good versus poor diabetic control. Pain 50:231‐236.
   Möller, K.A., Johansson, B., and Berge, O.G. 1998. Assessing mechanical allodynia in the rat paw with a new electronic algometer. J. Neurosci. Methods 84:41‐47.
   Rakieten, N., Rakieten, L., and Nadkarni, M.V. 1963. Studies on the diabetogenic action of streptozotocin. Cancer Chemother. Rep. 29:91‐98.
   Sharma, A.K. and Thomas, P.K. 1987. Animal models: Pathology and pathophysiology. In Diabetic Neuropathy (P.J. Dyck, P.K. Thomas, A.K. Asbury, A.I. Winegard, and D. Porte Jr., eds.) pp. 237‐252. Saunders, Philadelphia.
   Shir, Y., Raber, P., Devor, M., and Seltzer, Z. 1991. Mechano‐ and thermo‐sensitivity in rats genetically prone to developing neuropathic pain. Neuroreport 2:313‐316.
   Shir, Y., Zeltser, R., Vatine, J.J., Carmi, G., Belfer, I., Zangen, A., Overstreet, D., Raber, P., and Seltzer, Z. 2001. Correlation of intact sensibility and neuropathic pain‐related behaviors in eight inbred and outbred rat strains and selection lines. Pain 90:75‐82.
   Sima, A.A. and Shafrir, E. (eds.) 2000. Animal Models in Diabetes: A Primer, pp. 320. Taylor & Francis Group, London.
   Sima, A.A.F., Zhang, W., Xu, G., Sugimoto, K., Guberski, D., and Yorek, M.A. 2000. A comparison of diabetic polyneuropathy in Type II diabetic BBZDR/Wor rats and in Type I diabetic BB/Wor rats. Diabetologia 43:786‐793.
   Srinivasan, S., Stevens, M., and Wiley, J.W. 2000. Diabetic peripheral neuropathy—Evidence for apoptosis and associated mitochondrial dysfunction. Diabetes 49:1932‐1938.
   Wuarin‐Bierman, L., Zahnd, G.R., Kaufmann, F., Burcklen, L., and Adler, J. 1987. Hyperalgesia in spontaneous and experimental animal models of diabetic neuropathy. Diabetologia 30:653‐658.
   Yagihashi, S. 1997. Nerve structural defects in diabetic neuropathy: Do animals exhibit similar changes? Neurosci. Res. Commun. 21:25‐32.
   Yoon, Y.W., Lee, D.H., Lee, B.H., Chung, K., and Chung, J.M. 1999. Different strains and substrains of rats show different levels of neuropathic pain behaviors. Exp. Brain Res. 129:167‐171.
   Zimmermann, M. 1992. Ethical constraints in pain research. In Animal Pain: Ethical and Scientific Perspectives (T.R. Kuchel, M. Rose, and J. Burrell, eds.) pp. 13‐18. Australian Council on the Care of Animals in Research and Teaching, Glen Osmond, SA, Australia.
PDF or HTML at Wiley Online Library