Overview on Rodent Models of Alzheimer's Disease

Jean‐Cosme Dodart1, Patrick May1

1 Eli Lilly and Company, Indianapolis, Indiana
Publication Name:  Current Protocols in Neuroscience
Unit Number:  Unit 9.22
DOI:  10.1002/0471142301.ns0922s33
Online Posting Date:  November, 2005
GO TO THE FULL TEXT: PDF or HTML at Wiley Online Library


In Alzheimer's disease (AD), characteristic lesions develop in brain regions that subserve cognitive functions, ultimately leading to dementia. There are now several lesioned or transgenic small‐animal models of the disease that model select aspects of cognitive deficits and/or recapitulate many, but not all, of the characteristic pathologic lesions observed in AD. This overview describes the most common approaches used to model AD in rodents, highlights their utility, and discusses some of their deficiencies.

Keywords: Alzheimer; Neurodegeneration; Lesion models; Transgenic; Cholinergic; Amyloid; Tau

PDF or HTML at Wiley Online Library

Table of Contents

  • Alzheimer's Disease
  • Modeling Alzheimer's Disease
  • Conclusion
  • Literature Cited
  • Tables
PDF or HTML at Wiley Online Library


PDF or HTML at Wiley Online Library



Literature Cited

Literature Cited
   Albert, M.S. 1996. Cognitive and neurobiologic markers of early Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 93:13547‐13551.
   Almkvist, O. 1996. Neuropsychological features of early Alzheimer's disease: Preclinical and clinical stages. Acta Neurol. Scand. 165:63‐71.
   Andrä, K., Abramowski, D., Duke, M., Probst, A., Wiederhold, K.H., Burki, K., Goedert, M., Sommer, B., and Staufenbiel, M. 1996. Expression of APP in transgenic mice: A comparison of neuron‐specific promoters. Neurobiol. Aging 17:183‐190.
   Auld, D.S., Kornecook, T.J., Bastianetto, S., and Quirion, R. 2002. Alzheimer's disease and the basal forebrain cholinergic system: Relations to β‐amyloid peptides, cognition, and treatment strategies. Prog. Neurobiol. 68:209‐245.
   Bales, K.R., Verina, T., Dodel, R.C., Du, Y., Altstiel, L., Bender, M., Hyslop, P., Johnstone, E.M., Little, S.P., Cummins, D.J., Piccardo, P., Ghetti, B., and Paul, S.M. 1997. Lack of apolipoprotein E dramatically reduces amyloid β‐peptide deposition. Nat. Genet. 17:263‐264.
   Bard, F., Cannon, C., Barbour, R., Burke, R.L., Games, D., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson‐Wood, K., Khan, K., Kholodenko, D., Lee, M., Lieberburg, I., Motter, R., Nguyen, M., Soriano, F., Vasquez, N., Weiss, K., Welch, B., Seubert, P., Schenk, D., and Yednock, T. 2000. Peripherally administered antibodies against amyloid β‐peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat. Med. 6:916‐919.
   Bartus, R.T., Dean, R.L., Beer, B., and Lippa, A.S. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408‐417.
   Bayer, T.A., Wirth, O., Majtenyi, K., Hartmann, T., Multhaup, G., Beyreuther, K., and Czech, C. 2001. Key factors in Alzheimer's disease: β‐amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol. 11:1‐11.
   Berger‐Sweeney, J., McPhie, D.L., Arters, J.A., Greenan, J., Oster‐Granite, M.L., and Neve, R.L. 1999. Impairments in learning and memory accompanied by neurodegeneration in mice transgenic for the carboxyl‐terminus of the amyloid precursor protein. Mol. Brain Res. 66:150‐162.
   Berger‐Sweeney, J., Stearns, N.A., Murg, S.L., Floerke‐Nashner, L.R., Lappi, D.A., and Baxter, M.G. 2001. Selective immunolesions of cholinergic neurons in mice: Effects on neuroanatomy, neurochemistry, and behavior. J. Neurosci. 21:8164‐8173.
   Billings, L.M., Oddo, S., Green, K.N., McGaugh, J.L., and Laferla, F.M. 2005. Intraneuronal Aβ causes the onset of early Alzheimer's disease‐related cognitive deficits in transgenic mice. Neuron 45:675‐688.
   Blokland, A. 1996. Acetylcholine: A neurotransmitter for learning and memory? Brain Res. Rev. 21:285‐300.
   Borchelt, D.R., Thinakaran, G., Eckman, C.B., Lee, M.K., Davenport, F., Ratovitsky, T., Prada, C.M., Kim, G., Seekins, S., Yager, D., Slunt, H.H., Wang, R., Seeger, M., Levey, A.I., Gandy, S.E., Copeland, N.G., Jenkins, N.A., Price, D.L., Younkin, S.G., and Sisodia, S.S. 1996. Familial Alzheimer's disease‐linked presenilin 1 variants elevate Aβ1‐42/1‐40 ratio in vitro and in vivo. Neuron 17:1005‐1013.
   Borchelt, D.R., Ratovitski, T., van Lare, J., Lee, M.K., Gonzales, V., Jenkins, N.A., Copeland, N.G., Price, D.L., and Sisodia, S.S. 1997. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19:939‐945.
   Buxbaum, J.D., Christensen, J.L., Ruefli, A.A., Greengard, P., and Loring, J.F. 1993. Expression of APP in brains of transgenic mice containing the entire human APP gene. Biochem. Biophys. Res. Commun. 197:639‐645.
   Carlson, G.A., Borchelt, D.R., Dake, A., Turner, S., Danielson, V., Coffin, J.D., Eckman, C., Meiners, J., Nilsen, S.P., Younkin, S.G., and Hsiao, K.K. 1997. Genetic modification of the phenotypes produced by amyloid precursor protein overexpression in transgenic mice. Hum. Mol. Genet. 6:1951‐1959.
   Chen, G., Chen, K.S., Knox, J., Inglis, J., Bernard, A., Martin, S.J., Justice, A., McConlogue, L., Games, D., Freedman, S.B., and Morris, R.G.M. 2000. A learning deficit related to age and β‐amyloid plaques in a mouse model of Alzheimer's disease. Nature 408:975‐979.
   Chen, S.Y., Wright, J.W., and Barnes, C.D. 1996. The neurochemical and behavioral effects of β‐amyloid peptide(25‐35). Brain Res. 720:54‐60.
   Cherny, R.A., Atwood, C.S., Xilinas, M.E., Gray, D.N., Jones, W.D., McLean, C.A., Barnham, K.J., Volitakis, I., Fraser, F.W., Kim, Y., Huang, X., Goldstein, L.E., Moir, R.D., Lim, J.T., Beyreuther, K., Zheng, H., Tanzi, R.E., Masters, C.L., and Bush, A.I. 2001. Treatment with a copper‐zinc chelator markedly and rapidly inhibits β‐amyloid accumulation in Alzheimer's disease transgenic mice. Neuron 30:665‐676.
   Chishti, M.A., Yang, D.S., Janus, C., Phinney, A.L., Horne, P., Pearson, J., Strome, R., Zuker, N., Loukides, J., French, J., Turner, S., Lozza, G., Grilli, M., Kunicki, S., Morissette, C., Paquette, J., Gervais, F., Bergeron, C., Fraser, P.E., Carlson, G.A., George‐Hyslop, P.S., and Westaway, D. 2001. Early‐onset amyloid deposition and cognitive deficits in transgenic mice expressing a double mutant form of amyloid precursor protein 695. J. Biol. Chem. 276:21562‐21570.
   Chui, D.H., Tanahashi, H., Ozawa, K., Ikeda, S., Checler, F., Ueda, O., Suzuki, H., Araki, W., Inoue, H., Shirotani, K., Takahashi, K., Gallyas, F., and Tabira, T. 1999. Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat. Med. 5:560‐564.
   Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson‐Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim, S., Schenk, D., Fraser, P., St. George‐Hyslop, P., and Selkoe, D.J. 1997. Mutant presenilins of Alzheimer's disease increase production of 42‐residue amyloid β‐protein in both transfected cells and transgenic mice. Nat. Med. 3:67‐72.
   Cleary, J., Hittner, J.M., Semotuk, M., Mantyh, P., and O'Hare, E. 1995. β‐amyloid(1‐40) effects on behavior and memory. Brain Res. 682:69‐74.
   Collie, A. and Maruff, P. 2000. The neuropsychology of preclinical Alzheimer's disease and mild cognitive impairment. Neurosci. Biobehav. Rev. 24:365‐374.
   Coyle, J.T., Price, D.L., and DeLong, M.R. 1983. Alzheimer's disease: A disorder of cortical cholinergic innervation. Science 219:1184‐1190.
   Crawley, J.N., Belknap, J.K., Collins, A., Crabbe, J.C., Frankel, W., Henderson, N., Hitzemann, R.J., Maxson, S.C., Miner, L.L., Silva, A.J., Wehner, J.M., Wynshaw‐Boris, A., and Paylor, R. 1997a. Behavioral phenotypes of inbred mouse strains: Implications and recommendations for molecular studies. Psychopharmacology 132:107‐124.
   Crawley, J.N. and Paylor, R. 1997b. A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm. Behav. 31:197‐211.
   Crawley, J.N. 1999. Behavioral phenotyping of transgenic and knockout mice: Experimental design and evaluation of general health, sensory functions, motor abilities, and specific behavioral tests. Brain Res. 835:18‐26.
   Cummings, J.L. 2000. Cognitive and behavioral heterogeneity in Alzheimer's disease: Seeking the neurobiological basis. Neurobiol. Aging 21:845‐861.
   Decker, M.W. 1995. Animal models of cognitive function. Crit. Rev. Neurobiol. 9:321‐343.
   Delacourte, A. and Buée, L. 1997. Normal and pathological Tau proteins as factors for microtubule assembly. Int. Rev. Cytol. 171:167‐224.
   DeMattos, R.B., Bales, K.R., Cummins, D.J., Dodart, J.C., Paul, S.M., and Holtzman, D.M. 2001. Peripheral anti‐Aβ antibody alters CNS and plasma Aβ clearance and decreases brain Aβ burden in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 98:8850‐8855.
   Dickson, D.W. 1997. The pathogenesis of senile plaques. J. Neuropathol. Exp. Neurol. 56:321‐339.
   Dodart, J.C., Mathis, C., Bales, K.R., Paul, S.M., and Ungerer, A. 1999a. Early regional cerebral glucose hypometabolism in transgenic mice overexpressing the V717F β‐amyloid precursor protein. Neurosci. Lett. 277:49‐52.
   Dodart, J.C., Meziane, H., Mathis, C., Bales, K.R., Paul, S.M., and Ungerer, A. 1999b. Behavioral disturbances in transgenic mice overexpressing the V717F β‐amyloid precursor protein. Behav. Neurosci. 113:982‐990.
   Dodart, J.C., Mathis, C., and Ungerer, A. 2000a. The β‐amyloid precursor protein and its derivatives: From biology to learning and memory processes. Rev. Neurosci. 11:75‐93.
   Dodart, J.C., Mathis, C., Saura, J., Bales, K.R., Paul, S.M., and Ungerer, A. 2000b. Neuroanatomical abnormalities in behaviorally characterized APPV717F transgenic mice. Neurobiol. Dis. 7:71‐85.
   Dodart, J.C., Mathis, C., Bales, K.R. and Paul, S.M. 2002a. Does my transgenic mouse have Alzheimer's disease? Genes Brain Behav. 1:142‐155.
   Dodart, J.C., Bales, K.R., Gannon, K.S., Greene, S.J., DeMattos, R.B., Mathis, C., DeLong, C.A., Wu, S., Wu, X., Holtzman, D.M., and Paul, S.M. 2002b. Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer's disease model. Nat. Neurosci. 5:452‐457.
   Dovey, H.F., John, V., Anderson, J.P., Chen, L.Z., de Saint Andrieu, P., Fang, L.Y., Freedman, S.B., Folmer, B., Goldbach, E., Holsztynska, E.J., Hu, K.L., Johnson‐Wood, K.L., Kennedy, S.L., Kholodenko, D., Knops, J.E., Latimer, L.H., Lee, M, Liao, Z., Lieberburg, I.M., Motter, R.N., Mutter, L.C., Nietz, J., Quinn, K.P., Sacchi, K.L., Seubert, P.A., Shopp, G.M., Thorsett, E.D., Tung, J.S., Wu, J., Yang, S., Yin, C.T., Schenk, D.B., May, P.C., Altstiel, L.D., Bender, M.H., Boggs, L.N., Britton, T.C., Clemens, J.C., Czilli, D.L., Dieckman‐McGinty, D.K., Droste, J.J., Fuson, K.S., Gitter, B.D., Hyslop, P.A., Johnstone, E.M., Li, W.Y., Little, S.P., Mabry, T.E., Miller, F.D., and Audia, J.E. 2001. Functional gamma‐secretase inhibitors reduce β‐amyloid peptide levels in brain. J. Neurochem. 76:173‐181.
   Duff, K., Eckman, C., Zehr, C., Yu, X., Prada, C.M., Perez‐tur, J., Hutton, M., Buee, L., Harigaya, Y., Yager, D., Morgan, D., Gordon, M.N., Holcomb, L., Refolo, L., Zenk, B., Hardy, J., and Younkin, S. 1996. Increased amyloid‐β42(43) in brains of mice expressing mutant presenilin 1. Nature 383:710‐713.
   Fagan, A.M., Watson, M., Parsadanian, M., Bales, K.R., Paul, S.M., and Holtzman, D.M. 2002. Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease. Neurobiol. Dis. 9:305‐318.
   Ferris, S.H. and Kluger, A. 1997. Assessing cognition in Alzheimer disease research. Alzheimer Dis. Assoc. Disord. 11:45‐49.
   Fleischman, D.A. and Gabrieli, J. 1999. Long‐term memory in Alzheimer's disease. Curr. Opin. Neurobiol. 9:240‐244.
   Flood, J.F., Morley, J.E., and Roberts, E. 1991. Amnestic effects in mice of four synthetic peptides homologous to amyloid β protein from patients with Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 88:3363‐3366.
   Flood, J.F., Morley, J.E., and Roberts, E. 1994. An amyloid β‐protein fragment, Aβ[12‐28], equipotently impairs post‐training memory processing when injected into different limbic system structures. Brain Res. 663:271‐276.
   Francis, P.T., Palmer, A.M., Snape, M., and Wilcock, G.K. 1999. The cholinergic hypothesis of Alzheimer's disease: A review of progress. J. Neurol. Neurosurg. Psychiatry 66:137‐147.
   Gabrieli, J.D.E. 1996. Memory systems analyses of mnemonic disorders in aging and age‐related diseases. Proc. Natl. Acad. Sci. U.S.A. 93:13534‐13540.
   Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Carr, T., Clemens, J., Donaldson, T., Gillespie, F., Guido, T., Hagopian, S., Johnson‐Wood, K., Khan, K., Lee, M., Leibowitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya‐Zavala, M., Mucke, L., Paganini, L., Penniman, E., Power, M., Schenk, D., Seubert, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. 1995. Alzheimer‐type neuropathology in transgenic mice overexpressing V717F β‐amyloid precursor protein. Nature 373:523‐527.
   Gerlai, R. 2001. Gene targeting: Technical confounds and potential solutions in behavioral brain research. Behav. Brain Res. 125:13‐21.
   Gerlai, R., Fitch, T., Bales, K.R., and Gitter B.D. 2002. Behavioral impairment of APP(V717F) mice in fear conditioning: Is it only cognition? Behav. Brain Res. 136:503‐509.
   Geula, C. 1998. Abnormalities of neural circuitry in Alzheimer's disease: Hippocampus and cortical cholinergic innervation. Neurology 51:S18‐S29.
   Giacchino, J., Criado, J.R., Games, D., and Henriksen, S. 2000. In vivo synaptic transmission in young and aged amyloid precursor protein transgenic mice. Brain Res. 876:185‐190.
   Giacobini, E. 1990. The cholinergic system in Alzheimer's disease. Prog. Brain Res. 84:321‐332.
   Giovannelli, L., Casamenti, F., Scali, C., Bartolini, L., and Pepeu, G. 1995. Differential effects of amyloid peptides β‐(1‐40) and β‐(25‐35) injections into the rat nucleus basalis. Neuroscience 66:781‐792.
   Glenner, G.G. and Wong C.W. 1994. Alzheimer's disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120:885‐890.
   Gonzales‐Lima, F., Berndt, J.D., Valla, J.E., Games, D., and Reiman, E.M. 2001. Reduced corpus callosum, fornix and hippocampus in PDAPP transgenic mouse model of Alzheimer's disease. NeuroReport 12, 2375‐2379.
   Goodman, Y. and Mattson, M.P. 1994. Secreted forms of β‐amyloid precursor protein protect hippocampal neurons against amyloid β‐peptide‐induced oxidative injury. Exp. Neurol. 128:1‐12.
   Götz, J., Chen, F., van Dorpe, J., and Nitsch, R.M. 2001. Formation of neurofibrillary tangles in P301L tau transgenic mice induced by Aβ42 fibrils. Science 293:1491‐1494.
   Hanin, I. 1996. The AF64A model of cholinergic hypofunction: An update. Life Sci. 58:1955‐1964.
   Hardy, J. 1997. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci. 20:154‐159.
   Harkany, T., O'Mahony, S., Kelly, J.P., Soos, K., Töro, I., Penke, B., Luiten, P.G.M., Nyakas, C., Gulya, K., and Leonard, B.F. 1998. β‐Amyloid(Phe(SO3H)24)25‐35 in rat nucleus basalis induces behavioral dysfunctions, impairs learning and memory and disrupts cortical cholinergic innervation. Behav. Brain Res. 90:133‐145.
   Higgins, L.S., Holtzman, D.M., Rabin, J., Mobley, W.C., and Cordell, B. 1994. Transgenic mouse brain histopathology resembles early Alzheimer's disease. Ann. Neurol. 35:598‐607.
   Higgins, L.S., Rodems, J.M., Catalano, R., Quon, D., and Cordell, B. 1995. Early Alzheimer disease‐like histopathology increases in frequency with age in mice transgenic for β‐APP751. Proc. Natl. Acad. Sci. U.S.A. 92:4402‐4406.
   Holcomb, L., Gordon, M.N., McGowan, E., Yu, X., Benkovic, S., Jantzen, P., Wright, K., Saad, I., Mueller, R., Morgan, D., Sanders, S., Zehr, C., O'Campo, K., Hardy, J., Prada, C.M, Eckman, C., Younkin, S., Hsiao, K., and Duff, K. 1998. Accelerated Alzheimer‐type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat. Med. 4:97‐100.
   Holcomb, L.A., Gordon, M.N., Jantzen, P., Hsiao, K., Duff, K., and Morgan, D. 1999. Behavioral changes in transgenic mice expressing both amyloid precursor protein and presenilin‐1 mutations: Lack of association with amyloid deposits. Behav. Genet. 29:177‐185.
   Holmes, A., Wrenn, C.C., Harris, A.P., Thayer, K.E., and Crawley, J.N. 2002. Behavioral profiles of inbred strains on novel olfactory, spatial and emotional tests for reference memory in mice. Genes Brain Behav. 1:55‐69.
   Holtzman, D.M., Bales, K.R., Wu, S., Bhat, P., Parsadanian, M., Fagan, A.M., Chang, L.K., Sun, Y., and Paul, S.M. 1999. Expression of human apolipoprotein E reduces amyloid‐β deposition in a mouse model of Alzheimer's disease. J. Clin. Invest. 103:R15‐R21.
   Holtzman, D.M., Bales, K.R., Tenkova, T., Fagan, A.M., Parsadanian, M., Sartorius, L.J., Mackey, B., Olney, J., McKeel, D., Wozniak, D., and Paul, S.M. 2000. Apolipoprotein E isoform‐dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease. Proc. Natl. Acad. Sci. U.S.A. 97:2892‐2897.
   Hsia, A.Y., Masliah, E., McConlogue, L., Yu, G.Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R.C., Nicoll, R.A., and Mucke, L. 1999. Plaque‐independent disruption of neural circuits in Alzheimer's disease mouse models. Proc. Natl. Acad. Sci. U.S.A. 96:3228‐3233.
   Hsiao, K.K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. 1996. Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99‐102.
   Huitron‐Resendiz, S., Sanchez‐Alavez, M., Gallegos, R., Berg, G., Crawford, E., Giacchino, J.L., Games, D., Henriksen, S.J., and Criado, J.R. 2002. Age‐independent and age‐related deficits in visuospatial learning, sleep‐wake states, thermoregulation and motor activity in PDAPP mice. Brain Res. 928:126‐137.
   Hunter, C.L., Quintero, E.M., Gilstrap, L., Bhat, N.R., and Granholm, A.C. 2004. Minocycline protects basal forebrain cholinergic neurons from mu p75‐saporin immunotoxic lesioning. Eur. J. Neurosci. 19:3305‐3316.
   Irizarry, M.C., Soriano, F., McNamara, M., Page, K.J., Schenk, D., Games, D., and Hyman, B.T. 1997. Aβ deposition is associated with neuropil changes, but not with overt neuronal loss in the human amyloid precursor protein V717F (PDAPP) transgenic mouse. J. Neurosci. 17:7053‐7059.
   Jantzen, P.T., Connor, K.E., DiCarlo, G., Wenk, G.L., Wallace, J.L., Rojiani, A.M., Coppola, D., Morgan, D., and Gordon, M.N. 2002. Microglial activation and β‐amyloid deposit reduction caused by a nitric oxide‐releasing nonsteroidal anti‐inflammatory drug in amyloid precursor protein plus presenilin‐1 transgenic mice. J. Neurosci. 22:2246‐2254.
   Janus, C., Pearson, J., McLaurin, J., Mathews, P.M., Jiang, Y., Schmidt, S.D., Chishti, M.A., Horne, P., Heslin, D., French, J., Mount, H.T., Nixon, R.A., Mercken, M., Bergeron, C., Fraser, P.E., St George‐Hyslop, P., and Westaway, D. 2000. Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer's disease. Nature 408:979‐982.
   Kammesheidt, A., Boyce, F.M., Spanoyannis, A.F., Cummings, B.J., Ortegon, M., Cotman, C., Vaught, J.L., and Neve, R.L. 1992. Deposition of β/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxyl‐terminal fragment of the Alzheimer amyloid precursor in the brain. Proc. Natl. Acad. Sci. U.S.A. 89:10857‐10861.
   Koistinaho, M., Ort, M., Cimadevilla, J.M., Vondrous, R., Cordell, B., Koistinaho, J., Bures, J., and Higgins, L.S. 2001. Specific spatial learning deficits become severe with age in β‐amyloid precursor protein transgenic mice that harbor diffuse β‐amyloid deposits but do not form plaques. Proc. Natl. Acad. Sci. U.S.A. 98:14675‐14680.
   Koo, E.H., Park, L., and Selkoe, D.J. 1993. Amyloid β‐protein as a substrate interacts with extracellular matrix to promote neurite outgrowth. Proc. Natl. Acad. Sci. U.S.A. 90:4748‐4752.
   Kuo, Y.M., Kokjohn, T.A., Beach, T.G., Sue, L.I., Brune, D., Lopez, J.C., Kalback, W.M., Abramowski, D., Sturchler‐Pierrat, C., Staufenbiel, M., and Roher, A.E. 2001. Comparative analysis of amyloid‐β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer's disease brains. J. Biol. Chem. 276:12991‐12998.
   Lamb, B.T., Sisodia, S.S., Lawler, A.M., Slunt, H.H., Kitt, C.A., Kearns, W.G., Pearson, P.L., Price, D.L., and Gearhart, J.D. 1993. Introduction and expression of the 400 kilobase amyloid precursor protein gene in transgenic mice. Nat. Genet. 5:22‐30.
   Larson, J., Lynch, G., Games, D., and Seubert, P. 1999. Alterations in synaptic transmission and long‐term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Res. 840:23‐35.
   Laurent, B., Thomas‐Anterion, C., and Allegri, R.F. 1998. Mémoires et démences. Rev. Neurol. 154:2S 33‐49.
   Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn‐Hardy, K., Paul Murphy, M., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W.L., Yen, S.H., Dickson, D.W., Davies, P., and Hutton, M. 2000. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nat. Genet. 25:402‐405.
   Lewis, J., Dickson, D.W., Lin, W.L., Chisholm, L., Corral, A., Jones, G., Yen, S.H., Sahara, N., Skipper, L., Yager, D., Eckman, C., Hardy, J., Hutton, M., and McGowan, E. 2001. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487‐1491.
   Lim, G.P., Yang, F., Chu, T., Chen, P., Beech, W., Teter, B., Tran, T., Ubeda, O., Ashe, K.H., Frautschy, S.A., and Cole, G.M. 2000. Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci. 20:5709‐5714.
   Lim, G.P., Yang, F., Chu, T., Gahtan, E., Ubeda, O., Beech, W., Overmier, J.B., Hsiao‐Ashec, K., Frautschy, S.A., and Cole, G.M. 2001. Ibuprofen effects on Alzheimer pathology and open field activity in APPsw transgenic mice. Neurobiol. Aging 22:983‐991.
   Lue, L.F., Kuo, Y.M., Roher, A.E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J.H., Rydel, R.E., and Rogers, J. 1999. Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease. Am. J. Pathol. 155:853‐862.
   Mandelkow, E.M. and Mandelkow, E. 1998. Tau in Alzheimer's disease. Trends Cell Biol. 8:425‐427.
   Masliah, E., Sisk, A., Mallory, M., Mucke, L., Schenk, D., and Games, D. 1996. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F β‐amyloid precursor protein and Alzheimer's disease. J. Neurosci. 16:5795‐5811.
   Masliah, E., Sisk, A., Mallory, M., and Games, D. 2001. Neurofibrillary pathology in transgenic mice overexpressing V717F β‐amyloid precursor protein. J. Neuropathol. Exp. Neurol. 60:357‐368.
   Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L., and Beyreuther, K. 1985. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. Natl. Acad. Sci. U.S.A. 82:4245‐4249.
   Maurice, T., Lockhart, B.P., and Privat, A. 1996. Amnesia induced in mice by centrally administered β‐amyloid peptides involves cholinergic dysfunction. Brain Res. 706:181‐193.
   Mazzola, C., Micale, V., and Drago, F. 2003. Amnesia induced by β‐amyloid fragments is counteracted by cannabinoid CB1 receptor blockade. Eur. J. Pharmacol. 477:219‐225.
   McDonald M.P., Dahl, E.E., and Overmier, J.B. 1994. Efects of an exogenous β‐amyloid peptide on retention for spatial learning. Behav. Neural Biol. 62:60‐67.
   McDonald, M.P. and Overmier, J.B. 1998. Present imperfect: A critical review of animal models of the mnemonic impairments in Alzheimer's disease. Neurosci. Biobehav. Rev. 22:99‐120.
   McGaughy, J., Everitt, B.J., Robbins, T.W., and Sarter, M. 2000. The role of cortical cholinergic afferent projections in cognition: Impact of new selective immunotoxins. Behav. Brain Res. 115:251‐263.
  McLean, C.A., Cherny, R.A., Fraser, F.W., Fuller, S.J., Smith, M.J., Beyreuther, K., Bush, A.I., and Masters, C.L. 1999. Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer's disease. Ann. Neurol. 46:860‐866.
   Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., Tesseur, I., Spittaels, K., Haute, C.V., Checler, F., Godaux, E., Cordell, B., and Van Leuven, F. 1999. Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274:6483‐6492.
   Moran, P.M., Higgins, L.S., Cordell, B., and Moser, P.C. 1995. Age‐related learning deficits in transgenic mice expressing the 751‐amino acid isoform of human β‐amyloid precursor protein. Proc. Natl. Acad. Sci. U.S.A. 92:5341‐5345.
   Morgan, D., Diamond, D.M., Gottschall, P.E., Ugen, K.E., Dickey, C., Hardy, J., Duff, K., Jantzen, P., DiCarlo, G., Wilcock, D., Connor, K., Hatcher, J., Hope, C., Gordon, M., and Arendash, G.W. 2000. Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer's disease. Nature 408:982‐985.
   Mucke, L., Masliah, E., Johnson, W.B., Ruppe, M.D., Alford, M., Rockenstein, E.M., Forss‐Petter, S., Pietropaolo, M., Mallory, M., and Abraham, C.R. 1994. Synaptotrophic effects of human amyloid β protein precursors in the cortex of transgenic mice. Brain Res. 666:151‐671.
   Nabeshima, T. and Nitta, A. 1994. Memory impairment and neuronal dysfunction induced by β‐amyloid protein in rats. Tohoku J. Exp. Med. 174:241‐248.
  Oddo, S., Caccamo, A., Shepherd, J.D., Murphy, M.P., Golde, T.E., Kayed, R., Metherate, R., Mattson, M.P., Akbari, Y., and LaFerla, F.M. 2003. Triple‐transgenic model of Alzheimer's disease with plaques and tangles: Intracellular Aβ and synaptic dysfunction. Neuron 39:409‐421.
   Oyama, F., Sawamura, N., Kobayashi, K., Morishima‐Kawashima, M., Kuramochi, T., Ito, M., Tomita, T., Maruyama, K., Saido, T.C., Iwatsubo, T., Capell, A., Walter, J., Grunberg, J., Ueyama, Y., Haass, C., and Ihara, Y. 1998. Mutant presenilin 2 transgenic mouse: Effect on an age‐dependent increase of amyloid β‐protein 42 in the brain. J. Neurochem. 71:313‐322.
   Palmer, A.M. 2002. Pharmacotherapy for Alzheimer's disease: Progress and prospects. Trends Pharmacol. Sci. 23:426‐433.
   Pearson, B.E. and Choi, T.K. 1993. Expression of the human β‐amyloid precursor protein gene from a yeast artificial chromosome in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 90:10578‐10582.
   Perry, E.K., Tomlinson, B.E., Blessed, G., Bergmann, K., Gibson, P.H., and Perry R.H. 1978. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. Br. Med. J. 2:1457‐1459.
   Perry, R.J. and Hodges, J.R. 1999. Attention and executive deficits in Alzheimer's disease: A critical review. Brain 122:383‐404.
   Price, D.L. and Sisodia, S.S. 1998. Mutant genes in familial Alzheimer's disease and transgenic models. Annu. Rev. Neurosci. 21:479‐505.
   Quon, D., Wang, Y., Catalano, R., Scardina, J.M., Murakami, K., and Cordell, B. 1991. Formation of β‐amyloid protein deposits in brains of transgenic mice. Nature 352:239‐241.
   Rasmusson, D.D. 2000. The role of acetylcholine in cortical synaptic plasticity. Behav. Brain Res. 115:205‐218.
   Refolo, L.M., Pappolla, M.A., LaFrancois, J., Malester, B., Schmidt, S.D., Thomas‐Bryant, T., Tint, G.S., Wang, R., Mercken, M., Petanceska, S.S., and Duff, K.E. 2001. A cholesterol‐lowering drug reduces β‐amyloid pathology in a transgenic mouse model of Alzheimer's disease. Neurobiol. Dis. 8:890‐899.
   Rossner, S. 1997. Cholinergic immunolesions by 192IgG‐Saporin: A useful tool to simulate pathogenic aspects of Alzheimer's disease. Int. J. Dev. Neurosci. 15:835‐850.
   Saitoh, T., Sundsmo, M., Roch, J.M., Kimura, N., Cole, G., Schubert, D., Oltersdorf, T., and Schenk, D.B. 1989. Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts. Cell 58:625‐622.
   Sandhu, F.A., Salim, M., and Zain, S.B. 1991. Expression of the human β‐amyloid protein of Alzheimer's disease specifically in the brains of transgenic mice. J. Biol. Chem. 266:21331‐21334.
   Sarter, M. and Bruno, J.P. 1997. Cognitive functions of cortical acetylcholine: Toward an unifying hypothesis. Brain Res. Rev. 23:28‐46.
   Schenk, D., Barbour, R., Dunn, W., Gordon, G., Grajeda, H., Guido, T., Hu, K., Huang, J., Johnson‐Wood, K., Khan, K., Kholodenko, D., Lee, M., Liao, Z., Lieberburg, I., Motter, R., Mutter, L., Soriano, F., Shopp, G., Vasquez, N., Vandevert, C., Walker, S., Wogulis, M., Yednock, T., Games, D., and Seubert, P. 1999. Immunization with amyloid‐β attenuates Alzheimer‐disease‐like pathology in the PDAPP mouse. Nature 400:173‐177.
   Selkoe, D.J. 1994. Cell biology of the amyloid β‐protein precursor and the mechanism of Alzheimer's disease. Annu. Rev. Cell Biol. 10:373‐403.
   Selkoe, D.J. 1998. The cell biology of β‐amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8:447‐453.
   Sigurdsson, E.M., Lee, J.M., Dong, X.W., Hejna, M.J., and Lorens, S.A. 1997. Bilateral injections of amyloid‐β 25‐35 into the amygdala of young Fisher rats: Behavioral, neurochemical, and time dependent histopathological effects. Neurobiol. Aging 18:591‐608.
   Sigurdsson, E.M., Scholtzova, H., Mehta, P.D., Frangione, B., and Wisniewski, T. 2001. Immunization with a nontoxic/nonfibrillar amyloid‐β homologous peptide reduces Alzheimer's disease‐associated pathology in transgenic mice. Am. J. Pathol. 159:439‐447.
   Small, D.H., Nurcombe, V., Reed, G., Clarris, H., Moir, R., Beyreuther, K., and Masters, C.L. 1994. A heparin‐binding domain in the amyloid protein precursor of Alzheimer's disease is involved in the regulation of neurite outgrowth. J. Neurosci. 14:2117‐2127.
   Smith, G. 1988. Animal models of Alzheimer's disease: Experimental cholinergic denervation. Brain Res Rev 13:103‐118.
   Stepanichev, M.Y., Moiseeva, Y.V., Lazareva, M.V., Onufriev, M.V., and Gulyaeva, N.V. 2003. Single intracerebroventricular administration od amyloid‐beta (25‐35) peptide induces impairment in short‐term rather than long‐term memory in rats. Brain Res. Bull. 61:197‐205.
   Stephan, A. and Phillips, A.G. 2005. A case for a non‐transgenic animal model of Alzheimer's disease. Genes Brain Behav. 4:157‐172.
   Stine, W.B. Jr., Dahlgren, K.N., Krafft, G.A., and LaDu, M.J. 2003. In vitro characterization of conditions for amyloid‐beta peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278:11612‐11622.
   Strittmatter, W.J. and Roses, A.D. 1996. Apolipoprotein E and Alzheimer's disease. Annu. Rev. Neurosci. 19:53‐77.
   Sturchler‐Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K.H., Mistl, C., Rothacher, S., Ledermann, B., Burki, K., Frey, P., Paganetti, P.A., Waridel, C., Calhoun, M.E., Jucker, M., Probst, A., Staufenbiel, M., and Sommer, B. 1997. Two amyloid precursor protein transgenic mouse models with Alzheimer disease–like pathology. Proc. Natl. Acad. Sci. U.S.A. 94:13287‐13292.
   Tran, M.H., Yamada, K., and Nabeshima, T. 2002. Amyloid β‐peptide induces cholinergic dysfunction and cognitive deficits: A minireview. Peptides 23:1271‐1283.
   Waite, J.J., Chen, A.D., Wardlow, M.L., Wiley, R.G., Lappi, D.A., and Thal, L.J. 1995. 192 immunoglobulin G‐saporin produces graded behavioral and biochemical changes accompanying the loss of cholinergic neurons of the basal forebrain and cerebellar Purkinje cells. Neuroscience 65:463‐476.
   Waite, J.J. and Thal, L.J. 1996. Lesions of the cholinergic nuclei in the rat basal forebrain: Excitotoxins vs. an immunotoxin. Life Sci. 58:1947‐1953.
  Walsh, D.M. and Selkoe, D.J. 2004. Deciphering the molecular basis of memory failure in Alzheimer's disease. Neuron 44:181‐193.
   Weiss, C., Venkatasubramanian, P.N., Aguado, A.S., Power, J.M., Tom, B.C., Li, L., Chen, K.S., Disterhoft, J.F., and Wyrwicz, A.M. 2002. Impaired eyeblink conditioning and decreased hippocampal volume in PDAPP V717F mice. Neurobiol. Dis. 11:425‐433.
   Westerman, M.A., Cooper‐Blacketer, D., Mariash, A., Kotilinek, L., Kawarabayashi, T., Younkin, L.H., Carlson, G.A., Younkin, S.G., and Ashe, K.H. 2002. The relationship between Aβ and memory in the Tg2576 mouse model of Alzheimer's disease. J. Neurosci. 22:1858‐1867.
   Whiston, J.S., Selkoe, D.J., and Cotman, C.W. 1989. Amyloid β protein enhances the survival of hippocampal neurons in vitro. Science 243:1488‐1490.
   Wirak, D.O., Bayney, R., Ramabhadran, T.V., Fracasso, R.P., Hart, J.T., Hauer, P.E., Hsiau, P., Pekar, S.K., Scangos, G.A., Trapp, B.D., and Unterbeck, A.J. 1991. Deposits of amyloid β protein in the central nervous system of transgenic mice. Science 253:323‐325.
   Yamada, K., Tanaka, T., Han, D., Senzaki, K., Kameyama, T., and Nabeshima, T. 1999. Protective effects of idebenone and alpha‐tocopherol on β‐amyloid‐(1‐42)‐induced learning and memory deficits in rats: Implication of oxidative stress in β‐amyloid‐induced neurotoxicity in vivo. Eur. J. Neurosci. 11:83‐90.
   Yamaguchi, F., Richards, S.J., Beyreuther, K., Salbaum, M., Carlson, G.A., and Dunnett, S.B. 1991. Transgenic mice for the amyloid precursor protein 695 isoform have impaired spatial memory. NeuroReport 2:781‐784.
PDF or HTML at Wiley Online Library